PROCEEDINGS

OF THE

LINNEAN SOCIETY OF LONDON.

118TH SESSION.

FROM NOVEMBER 1905 TO JUNE 1906.

LONDON:
PRINTED FOR THE LINNEAN SOCIETY.
BURLINGTON HOUSE, PICCADILLY, W.,
BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET.
PROCEEDINGS

OF THE

LINNEAN SOCIETY OF LONDON.

115TH SESSION.

FROM NOVEMBER 1902 TO JUNE 1903.

LONDON:
PRINTED FOR THE LINNEAN SOCIETY,
BURLINGTON HOUSE, PICCADILLY, W.
1903.
PRINTED BY TAYLOR AND FRANCIS,
RED LION COURT, FLEET STREET.
CONTENTS.

List of Publications issued .. iv
Proceedings of the 115th Session 1
Abstracts of Papers and Exhibitions 42
Additions to the Library ... 50
Donations .. 79
Index .. 80
Publications of the Society issued during the period, 1st July, 1902, to 31st July, 1903:—

Journal (Botany), Nos. 179-180, 21st Oct., 1902.
 No. 246, 30th July, 1902.
 " 249, 1st January, 1903.
 " 250, 1st April, 1903.
 " 251, 30th June, 1903.
 " (Zoology), No. 186, 1st May, 1903.
 " 187, 30th July, 1903.

 v., Jan. 1903.
 vi., May 1903.
 x., Feb. 1903.
 xi., Feb. 1903.
 xii., July 1903.
Vol. IX. i., July 1903.
 ii., July 1903.

Proceedings, 114th Session, 1901-1902, October 1902.

List of [Fellows, Associates, and Foreign Members], 1902-1903.
November 6th, 1902.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. William Southworth was elected a Fellow of the Society.

The following paper was read:

"Notes on a Natural History Journey in Chile." By Henry J. Elwes, F.R.S., F.L.S.

November 20th, 1902.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Prof. Alfred William Alcock was elected, and Mr. Edward Augustus Bowles was admitted a Fellow of the Society.

Mr. R. Morton Middleton, F.L.S., gave an account of the dissertation by Linnaeus on *Siren lacertina*, annotated by the author, which he had found in a dealer's possession, and since then had been presented to the Society by the Treasurer.
Mr. W. C. Worsdell, F.L.S., showed a series of anomalous virescent flowers of *Helenium autumnale*, six strong plants in the garden at Friar Park, Henley, the residence of the Treasurer, being thus affected.

Mr. H. E. H. Smedley, F.L.S., F.G.S., exhibited large wax models of the fossil seeds of *Stephanospermum akenioides* and *Lagenostoma*, the latter occurring in the Lower Coal-Measures of Lancashire; he also showed a model of a recent Cycad for comparison.

The following papers were read:—

2. "On the Relation of Histogenesis to Tissue Morphology." By Arthur G. Tansley, F.L.S. (See p. 43.)
3. "On the Stelar Structure of *Schizaea* and other Ferns." By Leonard A. Boodle, F.L.S. (See p. 44.)

December 4th, 1902.

Mr. William Carruthers, F.R.S., Vice-President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

The Rev. Thomas Verrier Alkin, Mr. Leslie Gordon Corrie, Mr. Arthur Disbrowe Cotton, Mr. Robert Laurence Heinig, Mr. Hugh Martin Leake, Mr. Harold Hart Mann, and Mr. Alfred William Oke were elected, and Mr. John Parkin, Prof. Alfred William Alcock, and Mr. Ernest John Lewis were admitted Fellows of the Society.

The Rev. John Gerard, S.J., exhibited specimens of a *Polygala* from Grassington, in the West Riding of Yorkshire, collected by Mr. Lister Rotheray from the locality discovered by Mr. John Cryer in May last; the plant has been named *P. amarella*, Crantz, by Professor R. Chodat of Geneva. He also showed a monstrous form of *Geum rivale*, Linn., from between Long Preston and Settle, detected by Mr. Rotheray; the terminal flower was apparently normal, but about one inch and a half below the calyx there appeared a whorl of about twenty petaloid members, on extremely long "claws," and surrounded by a series of leaf-like bracts.

The discussion was carried on by Messrs. B. Daydon Jackson, W. C. Worsdell, Henry Groves, and A. Bennett.

Mr. R. Morton Middleton showed an extremely well-developed fasciated stem of *Asparagus*; and remarks on it were made by Dr. D. S. Scott and Mr. W. C. Worsdell.
Dr. George Henderson called attention to a passage in the Georgics of Virgil (I. 73 seqq.), in which the poet, after recommending a system of fallowing, proposes as an alternative means of restoring the fertility of the soil, that before taking a second grain crop, the soil should be re-fertilized, by planting it with a leguminous crop. (See p. 45.)

The following papers were read:—

1. "On some New and Rare Corals from Funafuti." By Gilbert C. Bourne, F.L.S.
3. "Note on Carex Tolmiei, Boott." By C. Baron Clarke, F.R.S., F.L.S.
4. "On the Indian Phalangidae contained in the Indian Museum at Calcutta." By Herr C. With of Copenhagen. (Communicated by Dr. H. J. Hansen, F.M.L.S.)

December 18th, 1902.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Frederick Ernest Grant and Mr. John Graham Kerr were elected, and Mr. Arthur Disbrowe Cotton and Mr. Alfred William Oke were admitted Fellows of the Society.

Mr. John Pinches sent for exhibition a sketch-book containing about 90 highly finished coloured drawings of British larvae, drawn by Mr. J. Standish.

The following papers were read:—

1. "Notes on some Copepoda from the Faroe Channel." By Thomas Scott, F.L.S.

Notice was given from the Chair that the next Meeting, to be held on Thursday, January 15th, 1903, at 8 p.m., would be made a Special General Meeting to consider the advisability of applying for a Supplementary Charter.
PROCEEDINGS OF THE

January 15th, 1903.

Mr. Frank Crisp, LL.B., B.A., Vice-President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Arthur Grove was elected a Fellow and Mr. Andrew Scott an Associate, and Mr. William Southworth and Mr. Hugh de Beauvoir de Havilland were admitted Fellows of the Society.

The Meeting having been made Special for the consideration of certain proposals, as announced from the Chair on the 18th December last, and communicated to the Fellows by Circular Letter of the 31st December, the Chairman explained that the President was prevented from presiding by illness, and briefly recapitulated the steps which had led to the proposals to be submitted for the consideration of the Fellows, which had been printed, and were in the hands of those present [and here reprinted].

The Rev. T. R. R. Stebbing, F.R.S., then moved:—"That this Meeting approving of the alterations in the constitution of the Linnean Society of London, as shown in the printed statement circulated, hereby authorizes the Council to take the necessary steps to obtain a Supplementary Charter embodying the said alterations, and thereafter to prepare revised Bye-Laws in accordance with the provisions of the new Charter."

This was seconded by Dr. J. Reynolds Green, and further discussed by Dr. J. Murie, Mr. Francis Darwin, Mr. H. J. Elwes, Mr. A. K. Coomaraswamy, Mr. W. Carruthers, Mr. A. G. Tansley, and Mr. W. M. Webb.

The first alteration, adding the words "without distinction of sex" to the existing paragraph on page 5 of the Charter as printed, was put from the Chair, and the result of the Ballot was declared as follows:—In favour, 54: not in favour, 17; and the motion was thereupon declared to be carried.

The other alterations were explained by the Chairman, and discussed. Mr. James Groves suggested that the remaining alterations should be adjourned, on the ground of insufficient notice. The discussion was continued by Mr. W. Bruce Bannerman, Prof. G. F. Boulger, Mr. V. I. Chamberlain, Mr. F. J. Hanbury, Dr. J. Murie, Prof. H. G. Seeley, Mr. E. M. Holmes, Mr. W. F. Kirby, Rev. T. R. R. Stebbing, and Mr. R. M. Middleton.

Mr. James Groves's amendment not being seconded, was not put. The motion in favour of the adoption of the remaining alterations, as shown in the printed statement in the hands of the Fellows, was then put to the Ballot, the votes being:—In favour, 43: not in favour, 3. Whereupon the Chairman declared the remaining alterations carried.
Changes suggested in the Supplemental Charter.
(Additions or omissions are shown by Italic type.)

PRESENT CHARTER.

P. 5.
"...and such others as shall from
Time to Time..."

P. 6.
"[that there shall be an indefinite
Number of Fellows of the said Society;
and]".

"... Treasurer and Secretary...

P. 7.
"... Council shall consist of
Fifteen Members..."

"... on the Twenty-fourth Day of
May in every succeeding Year, unless
the same shall happen to be on a Sunday,
and then on the Day following, assemble
together at the then last, or other usual
Place of meeting of the said Society,
and proceed, by Method of Ballot, to
[put out and amove any] Five of the
Members who shall have composed the
Council of the preceding Year; and
shall and may in like Manner, by
Method of Ballot, elect Five other dis-
crete Persons from amongst the Fellows of
the said Society, to supply the Places
and Offices of such Five [as may have
been so put out and amoved]; it being
Our Royal Will and Pleasure, that
One-[third] of the Members of the said
Council, and no more, shall [be] annually
[changed and removed by the Fellows
of the said Society]; And, also, that
they the said Fellows, or any Twenty-
one or more of them, shall and may, at
the Time and Place, and in Manner
aforesaid, by Method of Ballot, elect,
from among the Members of the said
Council, when formed and elected, in
Manner aforesaid, Three fit and proper
Persons, one of such Persons to be
President, another of such Persons to
be Treasurer, and the other of such
Persons to be Secretary of the said
Society..."

P. 8.
"... Death of any of the Members
of the Council, or of the President,
Treasurer, or Secretary, for the time
being, within the space of Three
Months..."

"... to elect such persons to be
Fellows..."

"... determining the Times and
Places of Meeting..."
PROCEEDINGS OF THE
February 5th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the General and Special Meetings held on the 15th January were read and confirmed.

Referring to an exhibition on 4th December, 1902, by Rev. John Gerard, of a monstrous form of Geum rivale, Mr. B. Daydon Jackson exhibited specimens in further illustration of median proliferation, from the herbarium of Sir James Edward Smith, and the British collection in the possession of the Society. He also stated that the proliferous form was mentioned by C. Merrett, in his 'Pinax,' 1667, p. 22, as occurring "at Brearcliff, in a wood of Mr. Brearcliff, below his house," and by John Ray, in his 'Synopsis,' 1690, p. 89, as Caryophyllatae flore ampio purpureo quadruplici aut quintuplici serie petalorum observavit D. Lawson prope Strickland magnum in Com. Westmorland." This locality is mentioned by J. Petiver in his 'English Plants,' tab. 40, fig. 4, in 1713, when figuring the plant as "Childing Avens." Later authors, as Relhan in his 'Flora Cantabrigiensis,' 1785, p. 200; ed. 3, 1820, p. 207; and Withering's 'Arrangement,' ed. 2, 1787, vol. ii. p. 478, refer to this form; the latter author also states that "when cultivated in a dry soil, the flowers are apt to become double or proliferous," op. cit. p. 478.

Mr. C. H. Wright, A.I.S., on behalf of Sir W. T. Thiselton-Dyer, K.C.M.G., exhibited amphicarpic fruit in specimens of (1) Cardamine chenopodifolia, Pers.; (2) Trifolium polymorphum, Poir.; and (3) Vicia amphicarpa, Dorth.

The President and Professor J. B. Farmer added some remarks, to which Mr. Wright replied.

Mr. H. E. H. Smedley, F.L.S., exhibited twelve wax models of longitudinal and transverse sections of the following seeds:—Stephanospermum alenoides, Pachytesta from the French Perm-Carboniferous Formation, Lagenostoma from the English Coal-Measures, with the recent Torreya and Zamia, in illustration of Prof. Oliver's paper.

The following paper was read:—

"On Stephanospermum, Brongn., a Genus of Fossil Gymnospermatous Seeds." By Prof. F. W. Oliver, F.L.S.

February 19th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. John Clayton, of Bradford, presented a set of thirty-two photographs to illustrate the celebrated Cowthorpe Oak, near
Wetherby, Yorkshire. From the time of John Evelyn this oak has been described, measured, and its age guessed at. Mr. Clayton, in a printed summary of 22 pages, gives an account of the various observers who have mentioned the oak in question, and many of the photographs are designed for comparison with other remarkable trees, amongst them the Crowhurst Yew in Sussex, the great Chestnut at Tortworth, and the Greendale Oak in Welbeck Park. In 1893 careful measurements and photographs were made of the tree, on four different visits in January, April, June, and October. The author's deduction from these data is, that the age of the tree has been greatly over-estimated; his own belief being that 500 years is the extreme limit of its age, from sapling to its present decrepitude and decay.

Copies of the photographs and text have been limited to ten; this copy being presented to the Society through Mr. William West, F.L.S. The donor was voted the special thanks of the Society for his gift.

Dr. George Henderson, F.L.S., offered "Some Remarks on the possible uses of Essential Oils in the Economy of Plant-life." (See p. 46.)

A discussion followed in which Mr. T. Christy, Mr. W. C. Worsdell, Mr. G. Massee, Mr. A. P. Young, Prof. J. Percival, and the President took part, and Dr. Henderson replied.

The following papers were read:—
1. "On the Electric Pulsation accompanying Automatic Movements in Desmodium gyrans." By Prof. Jagadis Chunder Bose, C.I.E. (Communicated by the President.)
2. "On Cerataphis Latanier, a peculiar Aphid." By Miss Alice L. Embleton, B.Sc. (Communicated by Prof. G. B. Howes, Sec. L.S.)
3. "On Specialization of Parasitism in the Erysiphaceae." By Mr. Ernest S. Salmon, F.L.S.

March 5th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Joseph Burtt Davy, Dr. Felix Eugen Fritsch, Mr. Robert Hall, and Mr. George Whitfield Smith were elected, and Mr. Arthur Grove was admitted a Fellow.

(1) Spiders found in 11 clay cells built between the boards of a thin book standing upright on a book-shelf; the space ½ inch broad by ⅜ inch high, and 4½ to 5 inches long. Mr. Saunders
reckoned that each cell contained 10 or 11 spiders and a single grub. He says:—"I did not see the actual insect that made these cells, though its noise attracted me. I know the beast, however, and believe it to be of the same kind (?) identical one) as the bee [wasp] in the tube. This bee flew on to my table near the shelf, and kindly investigated a cigarette-holder which I promptly closed up with my finger; I was able then to blow it into the tube. Many of the spiders, especially the larger ones, were alive, they could move their legs but not walk; at least one little one let itself down into the tube by a thread." He found a small fly in one cell, and others later in a different set of cells. He remarks that the Chinese must have noticed the spider-trapping habit, since they say of certain bees that they "adopt" spiders and bring them up as young bees.

(2) Contents of another set of cells, built in a corner of the verandah, in two vertical rows, about 13 cells in all. The spiders were all of one kind, 56 in number, with three half-eaten and two skins. They were all in the upper cells. In the lowest four cells there were four hard grub-cases. In the two next above these there were two soft grub-cases. In all these no spiders, but some silk. Then came a grub with no spider, but a great deal of silk in its cell. Next a grub with part of a spider and a good deal of silk, and finally cells with plenty of spiders and one grub to each cell, smaller and smaller to the top. In other cells there were several specimens of the small fly and fly-pupa. Some sets of cells differed from the rest by each having a distinct cover to the opening.

(3) Contents of a set of cells, the topmost of which was closed while Mr. Saunders was examining other sets. The day before had been wet, but even the topmost cell, which was not yet dry, contained a grub.

In the lowest cell he found 1 grub eating a spider, with 9 other spiders.
In the 2nd cell, 1 small grub and 7 spiders.
In the 3rd cell, 1 small grub eating a large spider, and 6 other spiders.
In the 4th cell, 1 tiny grub eating a large spider, and 8 other spiders.
In the 5th (scarcey dry), 1 tiny grub eating a spider, and 10 other spiders (including 2 pale spiders with greenish hairy legs).
In the 6th (still wet), 1 tiny grub eating a pale spider, and 7 other spiders of the usual kind.

The exhibitor also remarked, that in the family Crabronidae or Sphegidae Ammophila hirsuta, a British species of Sand-wasp, is said to provision its nest with spiders. The same habit has long been known in Peleopeus spirifex (Linn.), belonging to the same family. Also in the family Pompilidae, species of Pompilus are known to attack large spiders and make them a provision for their young ones.
Latreille, in 1802, quotes a letter from Cossigny to Réaumur, describing the behaviour of *Pelopoeus spirifex* to spiders in the Isle de France. Latreille named the genus *Pelopoeus*, the mud-worker, or potter.

The following papers were read:—

2. "On the Anatomy of the Pig-footed Bandicoot (*Choeropus castanotis*)." By F. Gymer Parsons, F.L.S.

3. "Further Notes on the Lemurs, with especial reference to the Brain." By Dr. G. Elliot Smith. (Communicated by Prof. G. B. Howes, Sec. L.S.)

March 19th, 1903.

Prof. SYDNEY H. VINES, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Joseph Burtt Davy was admitted a Fellow of the Society.

Mr. CLEMENT REID exhibited drawings by Mrs. Reid of fruits and seeds of British Preglacial and Interglacial plants (Thalamifloræ). In each case the specimens illustrated were the earliest known representatives of the species. Most of the plants are still living in Britain; but among the Thalamifloræ from the Cromer Forest-bed occur seeds of *Hypecoum*, a genus specially characteristic of the Mediterranean region, and no longer found living nearer than Southern France. The fossil seeds correspond closely with the living *Hypecoum pendulum* of Southern France, and either belong to that species or to a closely-allied extinct form.

The seeds of all the species of *Hypecoum* are covered by a curious close mosaic of cubic crystals, apparently calcium oxalate, which fill square pits in the surface of the testa. Traces of these pits are still found on some of the fossil seeds.

Mr. E. G. Baker, Dr. A. B. Rendle, and Prof. J. B. Farmer joined in a discussion on the exhibition, and Mr. Reid replied.

The following papers were read:—

1. "On *Poa laxa* and *Poa stricta* of our British Floras." By George Claridge Druce, F.L.S.

April 2nd, 1903.

Prof. SYDNEY H. VINES, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

The General Secretary alluded to the account of the Linnean Collections, given on the hundredth Anniversary of the Society, 24th May, 1888, and the statement that an interchange of specimens from the herbarium of Linnaeus, about 1785, for Banksian material, incorporated in the Smithian herbarium, had taken place (Proc. 1887–88, p. 28), but that the actual exchanges could not be traced.

During the autumn of 1902, when examining some unbound letters and other MSS. which belonged to Sir J. E. Smith, a small octavo note-book was found [shown to the Meeting] headed "Desiderata Banksiana, Jan. 1785," and consisting of seventeen leaves, with names of plants in double columns, and on the last leaf a note in pencil thus: "circa 2000; Feb. 9th, communicata ex H. L. patris 81." Certain entries were obliquely marked down in red ink, and these being counted proved to be equal in number with those stated in the last-mentioned note, which were communicated "ex H[erbario] L[iun8ei] patris." A few of these have been compared with the Linnean herbarium, to make certain that only duplicates were parted with by Smith in this exchange, by which, as has been previously stated, "... the herbaria of Banks and Smith were enriched at the expense of the Linnean herbarium" (Proc. 1887–88, p. 28, footnote).

Mr. E. M. Holmes and Mr. F. N. Williams made some remarks, and Mr. B. Daydon Jackson replied.

The following papers were read:—

1. "A List of Marine Algae collected by Mr. J. Stanley Gardiner at the Maldive and Laccadive Islands." By Mrs. A. Gepp (Ethel S. Barton). (Communicated by Mr. A. Gepp, M.A., F.L.S.)

2. "The Comparative Anatomy of Cyatheaceae and other Ferns." By D. T. Gwynne Vaughan. (Communicated by Dr. D. H. Scott, Sec.L.S.) (See p. 47.)

April 16th, 1903.

Rev. THOMAS R. R. STEBBING, F.R.S., Vice-President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Laurence Lewton-Brain was elected a Fellow of the Society.
Dr. George Henderson exhibited a coloured sketch of a withered leaf of Quercus incana, Roxb., and of slugs which are found amongst the dead leaves. He stated that he had brought the drawing of the mollusc and leaf to show their strange resemblance both in colour and outline. He found these slugs common at Dalhousie in the Punjab, on ground which is always covered with the withered leaves of this oak. A few black slugs were to be found with the light-brown specimens, and whilst the latter seemed to escape the notice of birds, the former were taken. He adduced some instances of animals changing colour in accordance with their environments.

The following papers were read:—

1. "On some Points in connection with the Ordinary Development of Vaucheria Resting-Spores." By Dr. H. Charlton Bastian, F.R.S., F.L.S.
2. "The Labial and Maxillary Palpi in Diptera." By Walter Wesché, F.R.M.S. (Communicated by Mr. George Massee, F.L.S.)
3. "Observations on Freshwater Rhizopods, with some Remarks on their Classification." By Prof. G. S. West, F.L.S.

May 7th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. William Dennis, Mr. James Stuart Thomson, and Mr. Monague Frank Hopson were elected Fellows of the Society.

In view of the approaching Anniversary Meeting the Rev. Thomas R. R. Stebbing and Mr. George Sharp Saunders were elected by show of hands Auditors on behalf of the Council, and Mr. Horace W. Monckton and Mr. Charles Baron Clarke on the part of the Fellows.

Mr. G. S. Saunders exhibited living specimens of the Carnivorous Slug, Testacella haliotidea, which he had received the previous day from Torquay.

The following papers were read:—

1. "The Ingolfiellidae, fam. nov.: a new type of Amphipoda." By Dr. H. J. Hansen, F.M.L.S.
2. The Evolution of the Australian Marsupialia; with Remarks on the Relationships of the Marsupials in general.” By Mr. B. Arthur Bensley. (Communicated by Prof. G. B. Howes, Sec. L.S.)

3. “Copepoda Calanoida from the Faroe Channel and other parts of the North Atlantic.” By the Rev. Canon Norman, F.R.S., F.L.S.

May 25th, 1903.

Anniversary Meeting.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Dr. Felix Eugen Fritsch and Mr. Thomas George Hill were admitted Fellows of the Society.

The Rev. T. R. R. Stebbing on behalf of the Auditors presented the accounts of the past financial year ending on the 30th April (see p. 13).

Mr. Henry Groves expressed a hope that Dr. Prior’s legacy of £100 would be applied to the permanent benefit of the Society, and asked for information as to an apparent increase in the Salaries.

The General Secretary pointed out that the usual employment of legacies was by the purchase of books for the Library, each volume bearing a label of its origin from the testator in question; he also stated that the apparent increase was due to a gift of £50 to Mr. Harting on his removal from the residential rooms belonging to the Society.

The General Secretary read his report of deaths, withdrawals, and elections as follows:

Since the last Anniversary Meeting 12 Fellows had died or their deaths been ascertained:

<table>
<thead>
<tr>
<th>Mr. Edwin Bostock.</th>
<th>Mr. Charles Maries.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mr. J. William Groves.</td>
<td>Dr. R. C. Alexander Prior.</td>
</tr>
<tr>
<td>Mr. Charles C. P. Hobkirk.</td>
<td>Sir Charles Shelley.</td>
</tr>
<tr>
<td>Mr. Alfred Vaughan Jennings.</td>
<td>Mr. Charles Marcus Wakefield.</td>
</tr>
<tr>
<td>Mr. W. J. Hume McCorquodale.</td>
<td>Rev. Thomas Wiltshire.</td>
</tr>
<tr>
<td>Investments on the 30th April, 1903.</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>Date</td>
<td>Description</td>
</tr>
<tr>
<td>06/11/1903</td>
<td>Balance in hand, 30th April, 1903.</td>
</tr>
<tr>
<td>11/09/1903</td>
<td>Petty Expenses (including rent and postage).</td>
</tr>
<tr>
<td>12/09/1903</td>
<td>Miscellaneous Printing and Stationery</td>
</tr>
<tr>
<td>11/09/1903</td>
<td>Expenses of Publications:</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Printing</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Books</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Library</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Salaries</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Receipts and Postage</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Interest and Insurance</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Telephone</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Rent and Insurance</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Interest on Investments</td>
</tr>
<tr>
<td>01/10/1903</td>
<td>Balance at Bankers on the Ist May, 1903.</td>
</tr>
</tbody>
</table>

Receivers and Trustees of the Linnean Society from May 1st, 1902, to April 30th, 1903.
The following sixteen Fellows have resigned:

Mr. William Bruce Bauneman. Mr. Charles Alphonse Le Doux.
Mr. Frederick William Burbidge. Dr. John Lowe.
Mr. Edgar Franklin Cooper. Rev. Edmund McClure.
Prof. Robert O. Cunningham. Major John F. A. McNair.
Mr. George Johnson Fookes. Mr. Albert Molineux.
Mr. George Arthur Grierson. Dr. David Thomson Playfair.
Mr. Kenneth Hurlstone Jones. Mr. William Thomas Rabbits.
Mr. Henry Laver. Mr. Charles Topp.

Twenty-eight Fellows (of whom 23 have qualified) have been elected.

The Librarian's report was read as follows:

"During the past year 68 volumes and 162 pamphlets have been received as Donations from Private Individuals.

"From the various Universities, Academies, and Scientific Societies, 274 volumes and 94 detached parts have been received in exchange and otherwise, besides 73 volumes and 42 parts obtained by exchange and as donations from the Editors and Proprietors of independent Periodicals.

"The Council had sanctioned the purchase of 171 volumes, and 96 parts of important works.

"The total additions to the Library are therefore 586 volumes and 294 separate parts.

"The number of books bound during the year is as follows:—
In half-morocco 292 volumes, in half-calf 3 volumes, in full cloth 195 volumes, in vellum 21 volumes, in buckram 18 volumes, in boards or half-cloth 15 volumes. Relabelled (half-morocco and cloth backs) 32 volumes. Total 576 volumes."

The General Secretary having read the Bye-Laws governing the elections,

The President opened the business of the day, and the Fellows present proceeded to vote by ballot for the Council and Officers.

The ballot for the Council having been closed, the President appointed Mr. J. G. Baker, Dr. A. B. Rendle, and Mr. R. Morton
Middleton, Scrutineers, and the votes having been counted by them they reported to the President, who thereupon declared the results as follows:—Mr. William Carruthers, Mr. Herbert Druce, Mr. W. B. Hemsley, Rev. T. R. R. Stebbing, and Mr. A. G. Tansley removed from the Council, and the following elected in their room:—Rev. R. A. Bullen, Mr. Charles Baron Clarke, Prof. J. B. Farmer, Dr. W. G. Ridewood, and Mr. A. C. Seward.

The Ballot for the Officers having been closed, the President appointed the same Scrutineers, and the votes having been counted by them, they reported to the President, who thereupon declared the following to be the Officers elected for the ensuing year:

President, Prof. Sydney Howard Vines.
Treasurer, Mr. Frank Crisp.
Secretaries { Prof. George Bond Howes.
 Dr. Dukinfield Henry Scott.

The President then delivered his Annual Address.
PRESIDENTIAL ADDRESS, 1903.

In addressing the Fellows of the Society at their Anniversary Meeting for the third time, I feel that the occasion is one of more than usual interest, not untouched with pathos; for this is doubtless the last Anniversary on which the assembled Fellows will all be of the same sex. The question as to the admission of Women to our Fellowship had already been raised when we met here a year ago, and, as I explained in my Address, the Council had taken steps to ensure that every Fellow should have an opportunity of expressing his opinion upon so important a matter. In due course a Special General Meeting was summoned for January 15 of this year, to discuss and vote upon the question, with the result that the proposal was carried by a large majority. The Society having thus committed itself to the new policy, the Council lost no time in taking the necessary steps to obtain the supplemental Charter and to adapt the Bye-laws to the altered circumstances. I regret that I am not in a position to announce to you today that we already possess the power to exert these new rights and privileges, nor can I tell you when that moment will arrive. That it is somewhat impatiently anticipated in certain quarters is shown by the fact that nominations of Lady-candidates have already been sent in. The process of obtaining a Supplemental Charter is evidently one that cannot be hurried; but I have little doubt that, should you again honour me with your confidence, it will fall to my lot to admit the first Lady-fellow. In this respect, at any rate, my tenure of office will be memorable. Regarding the matter, as I am bound to do, from the point of view of the welfare of the Society, I must confess that I am not altogether free from apprehension as to the future. We are making a somewhat heroic experiment, with no precedent, no working hypothesis, to suggest to us what the results are likely to be. If purity of motive can deserve success, then it should certainly be ours: for this revolution in our constitution is the expression of a sense of justice, of a desire to extend an equal recognition to all, whether men or women, who work in or for biological science. However, we must not shut our eyes to the fact that the Society is passing through a serious crisis, and that it claims more strongly than ever all the support that the loyalty of its Fellows can give.

The Session that is now closing has been of importance in the history of the Society, not only as regards this fundamental question, but also in the scarcely less important matter of administration. You will remember that a year ago we made changes in the Executive, placing Mr. B. Davdou Jackson at the head of it with the title of General Secretary. Like other great public institutions, the Society had realised the need for higher
efficiency, and reorganised accordingly: it has, I think, been more fortunate than some of them in attaining its object. An almost incredible amount of work has had to be done for the purpose of rendering more accessible the books and collections of the Society, to the great convenience of Fellows making use of them. Moreover, it has been of considerable advantage to the transaction of the business of the Society to have secured the regular attendance of a responsible officer who is also a member of Council and is therefore in a position to act with authority.

The scientific work of the Society has shown increasing activity; the supply of interesting and important papers calling for publication having been such as to tax our financial resources to the utmost. In addition to the ordinary publications, the Society is issuing (with the assistance of a grant from the Royal Society) the concluding parts of Messrs. Forbes and Hemsley's "Enumeration of Chinese Plants," forming Vol. 36 of our Botanical Journal: the completion of this important work, which has been so long delayed, is a matter of congratulation to all concerned.

During the latter half of the Session the Society has most unfortunately been deprived of the valuable services of its Zoological Secretary, Professor Howes, who has been compelled by ill-health to give up work for a time. I know that I am only echoing the sentiments of all present today, when I express the sympathy which I feel for him, and the hope that he may soon be restored to his former health and usefulness. In Professor Howes's absence, the other officers of the Society have done their best to carry on his work, and in this they have been most kindly assisted by some of the Fellows.

I take this opportunity of formally announcing that the Linnean Medal this year has been awarded by the Council to Dr. M. C. Cooke, who has been an Associate of the Society for over twenty-five years, and is so well known as a high authority in the department of Mycology.

There must always be an element of sadness in our Anniversary Meetings, for it is then that we are reminded of the losses that the Society has sustained. This year the hand of death has fallen but lightly upon us, and yet we have much to regret. In Dr. Prior we have lost a Fellow of more than fifty years' standing, whose name will always be associated with this period of British Botany. He showed his unabated interest in the welfare of the Society by a bequest of £100. He has fortunately left behind him an autobiographical sketch which reveals how active and interesting a life his was. Other old Fellows who have gone from us are Sir Charles Shelley, the Rev. T. Wiltshire, who was so long the Secretary of the Ray Society, and William Bull, so well known as a horticulturist: of more recent date were Charles P. Hobkirk, the eminent bryologist, and Charles Maries, the successful plant-collector.

Until a short time ago, I had hoped that I might be able to announce at this meeting that all our Foreign Members Linn. Soc. Proceedings.—Session 1902–1903.
had been spared to us. But this hope was dispelled by the intimation of the death, on March 10, of Julius Victor Carus, Professor of Zoology in the University of Leipzig. He was elected a Foreign Member in 1885, and was especially well known as the historian of Zoology, as the translator into German of several of Darwin's works, and as one of the few foreign Professors who have been engaged in scientific work in British Universities.

Within a few weeks the sad intelligence arrived of the death of yet another of our Foreign Members, M. François Crépin, the distinguished Director of the Royal Botanic Garden in Brussels. M. Crépin had attained a deservedly high reputation as a systematic botanist, and was a leading authority on certain groups of plants, notably the genus *Rosa*. His election as a Foreign Member took place but two years ago; every botanist here today feels, I am sure, as I do, a profound satisfaction that we did not fail to take advantage of that opportunity of showing our esteem and respect for the man and his work whilst he was yet with us.

So recently have these two gaps been made in our list of Foreign Members, that it has not yet been possible to take the necessary steps to fill them. I have therefore no election of Foreign Members to announce to you.

Turning to finance, you have learned that the Treasurer has barely succeeded in making the two ends meet. It is more true even than it was last year, that the income of the Society is not nearly large enough to meet all the demands that might justifiably be made upon it. So abundant is the supply of really good papers that, had we the funds available, the bulk of our annual publications might well be considerably increased. A larger expenditure upon the Library, and a margin for the up-keep of the Society's apartments, are both urgently needed. It is, I think, a healthy state of affairs in a Society like ours when the demands for really useful expenditure somewhat exceed the available funds: it is a sign of growing activity, and it enforces economy. But when the discrepancy becomes too great, then efficiency suffers. I do not say that we are yet in this predicament, but we must make every effort to avoid it.

I think that I have now brought before the Fellows all the chief events in the history of the Society for the past year, and have given them some idea of our present state and future prospects. But it is still a considerable time before the Ballot can close and we shall be statutorily at liberty to separate. Of what can I profitably discourse to you, so that I may relieve the tedium of waiting? I can think of nothing better than that I should tell you about a subject at which I have been working for some time past, and upon which I have already made communications to the Society. The subject is the digestion of proteids by plants. But I shall not by any means confine myself to plants: it will be absolutely necessary to say something about
the remarkable facts recently brought to light with regard to proteid-digestion in animals.

Let me, to begin with, very briefly trace the history of discovery concerning the digestion of proteids by plants. The first definite evidence of its occurrence was obtained as the result of the investigation of insectivorous plants by Mr. Darwin, Sir Joseph Hooker, and Prof. Lawson Tait; in fact, the publication of Mr. Darwin's book on 'Insectivorous Plants,' in 1875, may be taken as the starting-point. Almost simultaneously a digestive ferment or enzyme was discovered by von Grop-Besanez in the germinating seeds of various plants. This was followed, in 1879, by Wurtz's demonstration of the digestive activity of the juice of the Papaw, which was confirmed and extended by Dr. Martin a few years later. About this time, Hansen investigated the digestive property of the latex of the Fig-tree, which had been first observed by Bouchut in 1880. Shortly afterwards the digestive processes in germinating seeds were further investigated by Prof. Reynolds Green. In 1891, Professor Chittenden published his important researches into the very remarkable digestive action of Pineapple-juice upon proteids; and in the following year, Prof. Green discovered that a similar property was possessed by the juice of a species of Gourd (Cucumis utilissimus).

In 1896, I took up afresh the study of the digestive action of the liquid of the well-known insectivorous pitcher-plant Nepenthes, because the accuracy of the earlier observations on the subject had been called in question. It had been stated by Prof. Dubois, amongst others, that the apparent digestive activity in this case was due, not to any enzyme secreted by the plant itself, but to the intervention of Bacteria. I made a number of experiments under antiseptic conditions, with the pitcher-liquid of Nepenthes, which seem to me to refute the theory of Bacterial action and to uphold the conclusions of the original observers. Having become once more interested in the subject, I proceeded to investigate in greater detail the digestive processes in Nepenthes and in other plants in which they were then known to take place, the results of which I shall presently give some account. But what is perhaps more important, I was led on to examine many plants and parts of plants in which such processes were not suspected, to see if any trace of them could be detected, and I succeeded in doing so in almost every case. I have obtained positive results with such fruits and parts of fruits as the Melon, the Grape, Orange-peel, the Banana: with the foliage-leaves of the Dahlia, the Lettuce, the Cabbage, the Spinach, and many others: with the bulbs of the Tulip and the Hyacinth: the tubers of the Potato and the Jerusalem Artichoke: the tuberous roots of the Beet, the Dahlia, and the Turnip; as also with Yeast, and with the Mushroom among Fungi. I may in fact venture to assert that the presence of a protease, or proteid-
digesting enzyme or ferment, in the various parts of the plant-body is the rule rather than the exception.

I must not omit to mention that my results had been—although quite unknown to me—somewhat anticipated by the researches of Buscalioni and Fermi which were published in 1898. The method adopted by these authors for detecting digestive power consisted in observing whether or not the juices of various plants, or portions of their tissue, did or did not effect the liquefaction of gelatine, of course under strictly antiseptic conditions. Whilst their results and mine differ in many points of detail, they are entirely concordant as regards the main conclusion, the wide distribution of proteases in plants.

The method employed by me was altogether different from that of Buscalioni and Fermi, and was devised in connection with the attempt to determine the nature and mode of action of the proteases of plants. At the time when investigation in this direction first began, our knowledge of proteid-digestion in animals amounted roughly to this, that there were two enzymes concerned in the process—the pepsin of the stomach, the trypsin of the pancreas: that the former acted only in an acid medium, the latter most actively in an alkaline medium; that the former merely converted the more complex proteids into simpler substances of the same group, that is effected peptonisation; whilst the latter not only peptonised but also decomposed the simpler proteids into non-proteid substances, that is effected proteolysis.

It was from this point of view that Darwin and other observers of his time interpreted their discoveries as to the digestion of proteids by insectivorous plants. Inasmuch as the liquids of insectivorous plants were found to be active only when acid, it was naturally assumed that the enzyme which they contain must be closely allied to the pepsin of animals; an assumption that was also made by von Gorup-Besanez with regard to the enzyme which he extracted from germinating seeds. The first divergent opinion was expressed by Wurtz, who found that the substance which he extracted from the Papaw, and called papain, was active not only in acid but also in neutral and alkaline media; and he consequently suggested that it was allied rather with trypsin than with pepsin. This opinion was not conclusive, because Wurtz had not sufficiently examined the products of papain-digestion. The missing evidence was supplied by the researches of Martin, who found leucin and tyrosin among the products of digestion, substances which are characteristic of digestion by trypsin. Within a few years Prof. Reynolds Green observed in the Lupin and the Castor-oil plant, that the protease of seeds is proteolytic like trypsin; and he followed up this discovery by ascertaining that this is true also of the protease of the Kachri Gourd. In the meantime, Prof. Chittenden had demonstrated that the protease of the Pineapple possesses similar properties. Since then I have found, in Nepenthes, Yeast, the Mushroom, in fact in every one without exception, of the very
numerous experiments made with various plants and parts of plants in which I have detected digestive action, that the enzymes act proteolytically. In view of this accumulating evidence, the only possible conclusion to be drawn is that the proteases of plants are essentially proteolytic: there is, in fact, no record of the existence in any plant of a merely or mainly peptonising enzyme.

This conclusion has not been arrived at without contradiction. In the case of the pitcher-plant *Nepenthes*, the late Dr. Clautriau contested the accuracy of my results, asserting that here was an instance of simple peptonisation. However, I have never failed to obtain evidence of proteolysis in digestive experiments with the pitcher-liquid, and can only suggest that the conditions of Dr. Clautriau’s experiments were in some way unsuitable, probably because the necessary acid was not supplied. More recently Dr. Mendel has asserted that papain can peptonise but not proteolyse the higher proteids. In a paper which is shortly to be published, I have shown, I think conclusively, that the cause of the divergence between Dr. Mendel’s results and my own is that the antiseptic which he used in his experiments interfered with the action of the enzyme.

I may now very briefly describe the methods which I have adopted for the purpose, (1) of detecting the presence of a protease, and (2) of determining the nature of its action.

In the first instance, the method employed was the usual one of submitting some blood-fibrin to the action of the liquid, with due antiseptic precautions, and observing the more or less complete solution of it in the course of the experiment. It was in this way that the digestive activity of *Nepenthes*-liquid, Papaw, of Pineapple-juice, and of solutions of papain, had been first discovered; and it was in this way that I detected it in the Yeast, the Mushroom, the Melon, and other plants. But in many cases the result was altogether negative, and for the moment I followed the usual course of accepting this as evidence for the total absence of digestive power in these cases.

Confining my attention to the positive results, I endeavoured to ascertain, by an examination of the products of digestion, what had been the action of the protease in each case, whether merely peptonising or completely proteolytic. In devising a simple method for doing this, I remembered that one of the constant products of pancreatic digestion is a substance termed *tryptophane*, which gives a pink or violet colour on the addition of chlorine-water. As the presence of tryptophane is accepted as evidence of proteolysis effected by trypsin, it would also be evidence of proteolysis by vegetable proteases. I accordingly tested the liquids resulting from fibrin-digestions with the various plant-materials just mentioned, and in every case there was unmistakable evidence of the presence of tryptophane. The conclusion is therefore inevitable, that in all these cases the enzyme is, like trypsin, capable not only of peptonisation but also of proteolysis.
I now returned to the consideration of the cases in which I had failed to observe the digestion of fibrin; and on applying to them the tryptophane-test, I was somewhat surprised to find that it frequently gave a distinct and even strong reaction, especially when the material used consisted of pieces of the root, leaf, bulb, etc. under examination. It was clear that a protease was present which, though it did not act upon fibrin, digested the proteids contained in the juice or tissue of the plant itself. Seeing that these proteases, though possessing but slight peptonisng power, were strongly proteolytic, I varied the mode of experiment by submitting to their action such simple proteids as albumoses and peptones, with most satisfactory results.

I thus reached the further conclusion that whilst in certain plants (e.g. Pineapple, Papaw, Nepenthes, Yeast, etc.) there are proteases which closely resemble trypsin in their mode of action, in the majority of cases there are proteases which differ from trypsin in that they cannot peptonis fibrin though they resemble trypsin in proteolysing albumoses and peptones. These proteases seemed to belong to an altogether new type of enzyme; a consideration that led me to feel some misgiving as to my observations. Fortunately I happened, at this juncture, to hear of Cohnheim's recent discovery in the intestine of animals, of an enzyme possessing somewhat similar properties. This enzyme, to which he has given the name Erepsin, proteolyses albumoses and peptones, but cannot peptonis a more complex proteid than casein. I thus obtained confirmation of the surmise that the proteases which I had discovered were not trypsic, although they were proteolytic.

I must not overburden with detail this slight sketch of the growth of knowledge with regard to the distribution and nature of proteases in both plants and animals. I will, however, venture upon a few remarks of a general nature. With regard to the distribution of the proteases in the body, they have been found, as I have said, in all parts of the plant—leaves, stems, roots, bulbs, tubers, fruits, seeds; and the inference might be drawn that herein the plant differs from the animal organism, in which these enzymes are confined to the digestive tract. But this inference would be only partially true even of the higher animals. No doubt the enzymes are especially secreted by the digestive organs; but recent researches, more especially those of Hedin, have shown that they are widely distributed throughout the tissues of the animal body.

Then as to the relation to each other of the three known types of proteases—the peptic, the trypsic, the ereptic. The relation between trypsin and erepsin has already been sufficiently indicated. With regard to pepsin, it has long been generally held, though with some dissentients, that pepsin is an enzyme which can only peptonis but cannot further decompose proteids. But of late years there has been an accumulation of evidence tending to show that this view is too arbitrary: to show that pepsin can, as a
matter of fact, effect proteolysis, though much less actively than trypsin. If this be established, the result will be that all these proteases will have been found to differ not in kind, but only in degree. They will form a series in which trypsin, active alike in peptonisation and in proteolysis, will occupy a central position; on the one hand will be pepsin, with its active peptonisation and slight proteolysis; and on the other will be erepsin, with its active proteolysis and slight peptonisation.

It may well be asked, what is the use to plants of the proteases distributed in their tissues? The importance of these substances to insectivorous plants is sufficiently obvious; and it is easy to imagine how they may be of service to plants like the Fungi which are parasitic or saprophytic in habit. In both these cases, so far as is known, they serve to supply the plant with organic nitrogenous food from without. But what is the physiological significance of these substances in the case of an ordinary plant which does not require to be supplied with organic nitrogen? The reply to this question is briefly as follows. Normal green plants in their nutritive processes build up, from the simple materials of their food, organic nitrogenous substance which is stored in their tissues in the form of proteid matter that is often insoluble, and in any case is not readily diffusible. Consequently, when these stores of proteid are to be drawn upon for the purpose of growth, it is necessary that there should be some means by which they can be converted into substances which are both soluble and diffusible. This conversion is effected by the proteolytic enzymes. Their importance is strikingly illustrated in a germinating seed, where the reserve materials, whether deposited in the cotyledons or in the endosperm, have to be made available for the nutrition of the growing embryo. It is also clear in a germinating bulb or tuber, where the growth of the new shoots is dependent upon the reserves which these organs contain. But it is not limited to such cases as these. It is quite as great under the ordinary circumstances of the plant: for it is at all times necessary that the elaborated organic nitrogenous substance should be readily distributed throughout the body. Just as diastase, first discovered in seeds, has been found to occur in all parts of the plant-body where starch has to be converted into sugar, so the proteases are to be found wherever insoluble or indiffusible proteid has to be converted into the soluble and diffusible amidoic acids, such as leucin, tyrosin, and asparagin.

When the digestive activity of certain of the insectivorous plants, such as Nepenthis and Drosera, was first discovered, it was difficult to imagine how these plants should have developed the peculiar faculty of secreting proteases. But in the light of the subsequent discoveries of which I have endeavoured to give you some account, the explanation is simple. If leaves generally, or at any rate commonly produce a protease, it ceases to be remarkable that this should take place in the leaves of insectivorous plants. The peculiarity of these plants is now limited to
this—that their protease should be poured out at the surface so as to digest proteids supplied from without by the captured insects: whereas in ordinary plants the protease is retained within the tissues to digest, and so to render mobile, the proteids that are formed and stored there.

Another consideration of general interest is the relation between the proteases of plants and the digestive processes of the animals that consume the plants. In our own case, the matter may not be of much importance, since most of our vegetable food has been cooked before we eat it, and consequently the proteases have been destroyed. But in the herbivorous animals, more particularly the Ruminants, the case is altogether different. Here the vegetable food that has been eaten is placed under conditions that are altogether favorable to the action of the proteases which it contains, so that there is reason to believe that digestion in these animals is, in no small degree, a process of autolysis, the food providing at once the nutriment and the means of digesting it.

To pass now to another part of the subject. Quite recently a very remarkable discovery has been made by Pawlow concerning the origin of one of the animal proteases, namely trypsin. It was known that perfectly fresh and pure pancreatic juice had little or no digestive power, but the cause of this had not been traced. Pawlow’s experiments brought to light the fact that the addition of a small quantity of the intestinal secretion *(succus entericus)* to inert pancreatic juice immediately renders it active. The explanation of these facts is that in the pure pancreatic secretion, free trypsin is not present, but its mother-substance, trypsinogen, from which it has to be liberated. On the addition of intestinal juice, this liberation is effected by means of a substance which it contains, which Pawlow has termed *Kinase*, and has aptly described it as a “ferment of ferment.”

Curiously enough, my thoughts had been turned in the same direction in the course of my work on the proteases of plants. It had been known since the time of Schönbein that the juices and tissues of various plants possess the property of causing tincture of guaiacum to turn blue either with or without the addition of peroxide of hydrogen. The reaction is one of oxidation; and it has been ascertained of late years by Bertrand and others, that it is effected by certain definite substances termed oxidases and peroxidases. Various opinions have been hazarded as to the probable significance of these substances in the economy of the plant, but no coherent theory on the subject has yet been established. Incidentally I observed that whenever a juice or a tissue gave a good guaiacum-reaction, it also proved itself to be proteolytic. This observation was not altogether new: indeed at one time it had been thought that all enzymes reacted with guaiacum, which is not the case. But it led me to inquire into the meaning of this association of oxidase and enzyme in the plant. Is it a coincidence or a correlation?—this is the problem
that I am now endeavouring to solve. I cannot yet say that I have succeeded, but I will so far take you into my confidence as to tell you what is my working hypothesis. I assume that we have here to do with a real correlation, and of this kind, that the substance giving the guaiacum-reaction is of the nature of a kinase; that it is closely associated with the proteases because it liberates them from their zymogens; and that it effects this liberation by a process that is essentially one of oxidation. It may not appear a difficult matter to put this hypothesis to the proof; but it is not quite so easy as it appears, for the reason that in the plant-body, where the physiological division of labour is far from complete, enzymes and oxidases are secreted by the same tissues and even by the same cells. Should I have the privilege of again addressing you a year hence, I may perhaps be able to tell you what the verdict of experiment has been, and I hope that it may have been recorded in my favour. But whether that be so or not, I may at least expect to be able to report that substantial progress has been made in the investigation of these substances which play so important a part in the metabolism of both plants and animals.

Dr. M. T. Masters then moved:—"That the President be thanked for his excellent Address, and that he be requested to allow it to be printed and circulated amongst the Fellows," which was seconded by Mr. F. N. Williams, and carried.

The President then addressed Dr. M. C. Cooke, and in presenting the Linnean Medal to him, specified the services which had moved the Council to make this award.

The President said:—

"Dr. Cooke,—The encouragement of the study of Systematic Botany has always been one of the chief objects of this Society: and the list of the recipients of the Linnean Medal affords sufficient proof that eminence in this department of botanical research meets with the highest recognition that it is in our power to accord. But whilst I find there many distinguished Phanerogamists,—Hooker, DeCandolle, Oliver, Baker, and King, and two Algologists, Bornet and Agardh—there is but one, Ferdinand Julius Cohn, who has any special claim to the title of Mycologist. It is a most fortunate circumstance that an opportunity should have occurred to add to it a second Mycologist, seeing that the domain of Mycology is more extensive than that of any other of the provinces of the Vegetable Kingdom, or indeed than that of all of them taken together, and in view of the increasing scientific interest and economic importance of that branch of Botany.

"Had the institution of the Linnean Medal taken place a few years earlier, no doubt one of the first awards would have fallen to Mycology in the person of Berkeley. But since his name does
not adorn our list, nothing can be more appropriate than that it should include that of one who was his collaborator and has proved himself to be his legitimate successor. To say this is to give high praise indeed: but it is justly merited. For more than forty years you have been uncansingly engaged in describing, depicting, naming, and classifying the enormous mass of material that has been submitted to you from all parts of the world; and it is not too much to say, that few have contributed so materially as yourself to the reduction of the mycological chaos. You have enriched the literature of the science with many important works, among which the 'Mycographia' and the 'Illustrations of the British Fungi' deserve special mention. But your crowning achievement is, I take it, the formation of your great mycological herbarium, copiously illustrated with drawings and notes, which is now, I am glad to say, a national possession safely deposited at Kew.

"It is on these grounds that I have ventured to speak of you as Berkeley's legitimate successor; and they also fully justify the action of the Council in awarding to you the Linnean Medal, which I now have the honour to present, with sincere congratulations and every good wish."

Dr. Cooke made a suitable reply in acknowledgment, stating that his election as an Associate of the Society in 1877 was a great encouragement to him in his scientific career, and this award was deeply gratifying to him.

The General Secretary then laid the Obituary Notices of the past year before the Meeting, as follows, and the proceedings terminated.

John Bain, an Associate since 2nd April, 1863, was born in Ireland on 9th May, 1815, of Scotch parents, his father, a gardener and land-steward, having settled there some time before. He followed his father's calling, and served under William Anderson, in the old Physick Garden at Chelsea, which place he left to work at Trinity College Botanical Gardens, James Townsend Mackay being at that time curator. Mackay, author of 'Flora Hibernica' (Dublin, 1836), had laid out these gardens in 1806 for the Dublin University, and he attracted many of the best men of the day to serve under him. David Moore, afterwards of Glasnevin, and his younger brother Charles, afterwards at Sydney, were pupils of Mackay. Bain became foreman, and afterwards assistant-curator to Mackay, acting as amanuensis for the 'Flora Hibernica.' On the death of Mackay in 1862, Bain succeeded him, and under his energetic sway the gardens "took on a second lease of usefulness and popularity." Amongst those who bore testimony to his skill were Dr. G. J. Allman, Prof. W. H. Harvey, Sir W. J. Hooker, and Dr. G. Gardner, the latter sending him original plants of
Cattleya labiata and Zygopetalum Mackayi with other orchids found by him in Brazil.

Besides his garden duties, Bain kept up his love for native plants, and even late in life he would walk many miles to point the station of a rare plant, such as Gentiana Pneumonanthe, Listera cordata, Malaxis paludosa, and Trichomanes radicans. He was the first to find Malva rotundifolia and Hordeum sylvaticum in the neighbourhood of Dublin.

After more than fifty years' connection with the gardens of Trinity College, Dublin, he retired in 1878 or 1879; he never married, but in his retirement lived with a niece at Holyhead, where he died on Tuesday, 28th April, in the early afternoon, and was buried at Mount Jerome Cemetery, Dublin, on 1st May, 1903, beside his brothers Robert and William, Dr. Mackay, and other friends.

A portrait was published in Vol. 35 of 'The Garden,' in July 1889, the volume being dedicated to him.

William Bull, the well-known nurseryman, King's Road, Chelsea, died on 1st June, 1902, after an illness of three days. He was born in 1828, and in his early life he was a traveller for the then famous firm of Rollison, at Tooting, and in that capacity became known as an exceptionally able man. In 1861 he took over the premises and nursery stock of Weeks & Co.; this was the beginning of his enterprising career. Ornamental plants, tender flowering plants, and orchids were his favourites; but he also zealously took up any group of plants which attracted the attention of his customers. Thus, Aucuba japonica was exhibited by him in our rooms, in fruit, with the male and hermaphrodite flowers, on 20th February, 1868, and at the same time he pointed out the length of time during which the pollen retains its fertilizing power. In June 1876 he also exhibited living plants of Liberian coffee, Coffea liberica, Hiern, which he introduced, and has since been widely brought into cultivation for estates on which C. arabica is subject to disease. In 1880 he despatched Messrs. Shuttleworth and Corder to Colombia for Orchids; later he turned his attention to orchid hybridizing, and his annual orchid exhibitions were excellently managed.

In the 'Gardeners' Chronicle' for 7th June, 1902, which has an excellent portrait with an obituary, it is related that, wishing to show a special Aroid, he brought it with him in his brougham, till its horrible stench drove him to take a place on the box-seat by his coachman, and in this state the Aroid arrived at the editor's office.

He was elected Fellow of this Society 15th February, 1866, and in former years was a frequent attendant at our meetings; he also belonged to the Royal Geographical and Zoological Societies. The distinction he prized most was that of a Victoria Medal of Honour, from the Royal Horticultural Society in 1897.

As a man of business he was energetic and hard-working, a
good employer, and eager in procuring new plants for cultivation: altogether a remarkable man, whose death has caused regret among a large circle of correspondents.

Julius Victor Carolus, Foreign Member since 7th May, 1885, has recently passed away, in his eightieth year, for nearly a third of which period he was editor of the ‘Zoologischer Anzeiger.’ He was born at Leipzig on 25th August, 1823, and from 1841 onwards pursued his medical and other studies at that University. Thence he went to study comparative anatomy at Freiburg in Baden, and in 1849 he was at Oxford, were he acted as conservator of the Museum of Comparative Anatomy, and thus acquired a command of our language. He returned to Leipzig in 1851 as Docent, and there he remained practically during the remainder of his life, making a break in 1873-74 while acting as locum tenens in Edinburgh for Prof. Wyville Thomson, then with the ‘Challenger.’

He was a man of great industry, but devoted his energies to the history of his science, translations, bibliographies, and the like, rather than to original research. He was a tool-maker, rather than a tool-user, a type of worker apt to be ignored, though made use of by others, whose gratitude, if existent, is apt to be evanescent. He translated many of Darwin’s works into German, from 1866 onward, and communicated oversights in the original to the author, thus securing for the German versions a greater accuracy than in the original issue.

Britain was not unmindful of his merit: he was D.C.L. of Oxford, and M.D. of Edinburgh University; his election as one of our Foreign Members took place eighteen years ago, and of the Zoological Society of London in 1897. He died on the 20th March, 1903, leaving a widow, a son and three daughters.

François Crépin.—By the death, at Brussels, on the 20th of April, 1903, of François Crépin, Belgium has lost her doyen botanist. He was born at Rochefort, in the province of Namur, on Oct. 30th, 1830. Rochefort is a small country-town near the southern boundary of Belgium, situated in the valley of the Lesse, a tributary of the Meuse, surrounded by limestone hills. Here Crépin devoted himself at an early age to the study of botany and laid the foundation of his large collection of Roses. His first publication, which appeared in 1859 in the Memoirs of the Royal Academy of Belgium, was entitled “Notes sur quelques plantes rares ou critiques de Belgique.” This was followed by four others with the same title, extending down to 1865. In 1860
appeared the first edition of his 'Manuel de la Flore Belgique.' This is a small octavo volume of 236 pages, and contains, over and above descriptions of genera and species, directions for forming a herbarium, a bibliography of Belgian botany, an account of the geographical regions and their characteristic plants, a discussion on the nature of species, and a glossary of terms. It is an eminently useful and practical book, and did much to revive a love for botany in Belgium, which for many years had been almost entirely neglected. The 'Manuel' passed through several editions (the 5th in 1884), and the flora of Belgium being similar to that of England, has been found very useful in this country. In the second edition the descriptive part is considerably enlarged, and a good deal of the subsidiary matter omitted. The number of indigenous Belgian flowering plants and vascular cryptogams is, in this second edition, estimated at 1240. Crépin always took a moderate view of species, neither uniting nor dividing excessively. In 1861 he was appointed a professor at the State School of Horticulture at Ghent, a position which he held up to 1870. In 1862 the reviving love for botany led to the formation of the 'Société royale botanique de Belgique,' under the presidency of the veteran Dumortier. Crépin was at the beginning a member of the council, and after his removal to Brussels filled for nearly thirty years the office of secretary. The publications of this society now amount to forty volumes; to these Crépin was one of the most prolific contributors, his papers ranging over a wide field, including, in addition to original papers, which very often deal with Roses, reviews and reports of excursions. The more important of his papers on Roses were reprinted in a separate form under the title of 'Primitiae Monographiae Rosarum.' Of these the second part, which contains careful original descriptions of the Asiatic Roses, is the most valuable.

In 1871 Crépin was appointed Curator of the Herbarium of the Botanic Garden at Brussels, and from that date to his death he lived in the metropolis. During his summer holidays he usually visited Switzerland, devoting his attention principally to the rich Rose-flora of the lower part of the Rhone valley. He was elected a Correspondent of the Brussels Academy in 1872, a Member in 1878, and a director of the scientific division in 1888. About 1873–75 he paid much attention to palaeontology, and contributed several papers on the subject to the Memoirs of the Academy. Many of the fossil plants in the Brussels Museum bear labels in his neat legible handwriting. In 1876 he became Director of the Brussels Garden, and under his management both the living and dried collections were greatly increased. He paid two visits to England during his term of office, and annotated copiously the Roses at Kew and the British Museum. In 1879 Dumortier died, and Crépin wrote his éloge for the Memoirs of the Academy, as he did afterwards that of Decaisne in 1881, and Édouard Morren in 1887. He set his heart upon publishing a general monograph of Roses, and for this he accumulated a very
large collection and made careful studies in all directions. But although the book was advertised, failing health prevented him from publishing it, and compelled him, a short time before his death, to give up the directorship of the Botanic Gardens and the secretarysthip of the Botanical Society. The best sketch of his general ideas on the classification of Roses will be found in a paper which he contributed to the London Rose Conference of 1889, which is printed in the eleventh volume of the new series of the 'Journal of the Royal Horticultural Society' (page 217). His final views on the delimitation and definition of the innumerable European species—which should rank as species, which as mere varieties, and which as hybrids—are now, we fear, irretrievably lost.

Charles Cordington Prissick Hobkirk, a prominent Yorkshire naturalist, was born on 13th January, 1837, at Huddersfield, the only son of his father, David T. Hobkirk, who was engaged in the woollen trade. He entered the West Riding Union Bank in 1852, when 15 years of age, and rose to the position of Manager of the Dewsbury Branch of that bank in January 1884; in 1892 he quitted this position, but two years later he came back to Dewsbury as manager for the Dewsbury branch of the Huddersfield Banking Company; in 1897 he retired from business-life, and lived at first at Horsforth and finally at Ilkley, where he died on 29th July, 1902, after a long and painful illness.

It was in his own time, in the intervals of business, that he acquired his extensive knowledge of the natural history of his native county. In 1859 he brought out a volume, 'Huddersfield: its History and Natural History,' embodying in it a wealth of information on the fauna and flora of the district; it reached a second and amplified edition in 1868. From 1864 to 1867 a series of "The Naturalist" came out at Huddersfield, having papers on British mosses from his pen; in it he also described the forms of Crataegus oxyacantha, and translated a paper by Deséglise on the Tomentose section of Rosa. This venture ceased in the year last mentioned, but was revived in 1875, Hobkirk being one of the editors till 1884, when the Yorkshire Naturalists' Union took over the magazine. During part of this period he was President of the Huddersfield Naturalists' Society, and actively pushed the interest of more than one other local association. In the Yorkshire Naturalists' Union Mr. Hobkirk was especially active and untiring in the cause he had at heart, and he was its President in 1892.

Although he thus showed his catholicity of taste, he was essentially a bryologist. The volume by which he is best known, is his book 'Synopsis of British Mosses,' which came out in 1873, reaching a second edition in 1884; this was a most useful book to the British student, for whom Wilson's 'Bryologia' was unobtainable, and Dr. Braithwaite's 'Moss Flora' was not even begun. He was responsible, with Henry Boswell, for the 'London Catalogue of British Mosses,' published for the then active Botanical Locality Record Club; the second issue of this came out in 1881.
His wife and his youngest son predeceased him, the latter a few weeks before his own death. His election into our Society took place on 7th March, 1878. A portrait of him is given in the April number of 'The Naturalist,' with an appreciative memoir supplying many additional touches, from the pen of an old friend, whose identity is scarcely concealed by the use of the simple initial, R.

Alfred Vaughan Jennings was born at Hampstead, educated at St. Paul's School, and what is now known as the Royal College of Science, South Kensington, studying under Prof. Huxley, and was proxime accessit for the Forbes Medal. Next he obtained an appointment in the Geological Department of his College, and also as teacher of Biology to the evening classes at the Birkbeck Institution, which owed much to his enthusiastic labours. His health breaking down, he took a voyage to New Zealand, and, on his return, he was attached for a brief period to the Royal College of Science, Dublin, as Demonstrator of Botany and Geology. Four papers by him appear in our Journal, as noted below. His bodily health continued to fail, and at last the end came at Christiania, on 11th January, 1902. He was elected Fellow of this Society, 3rd May, 1888.

An intimate friend writes that he "was an untiring collector in Zoology, Botany, and Geology, and the author of several original papers in each of these three branches of Natural Science. The illustrations to his papers, and his drawings in the Whitechapel Museum show considerable artistic ability. In disposition he was modest and retiring, and very kindly and generous; no student ever came to him for help and was refused. Had his brilliant brain been supported by proportionate bodily health, he would have achieved much, possibly as much as he was always hoping to be able to accomplish. For the last ten years his existence had been a fight for life, and his best friends can only be thankful that the fight is now ended."

Most of the preceding information has been obtained from a sympathetic notice in the 'New Phytologist' for January last.

Mr. Grenville A. J. Cole has been kind enough to transmit a list of our deceased Fellow's papers:

1. The Orbitoidal Limestone in North Borneo. Geol. Mag., Dec. 1888.
3. Cave-men of Mentone. Natural Science, June 1892.

In conjunction with Mr. Greunville A. J. Cole:—

With Miss K. M. Hall:—

With Mr. Griffith J. Williams:—

Alexander Kowalevsky, the eminent Russian biologist, was born in 1840. He belonged to a family of which two other members attained scientific distinction: his brother Vladimir as a palæontologist, and his cousin Sophie as a mathematician. In his seventeenth year, after a brief period of study in the St. Petersburg University, Alexander Kowalevsky went abroad, first working at chemistry in Bunsen's laboratory in Heidelberg, and then studying zoology under Leydig at Tübingen. In 1864 he went to Naples, where he worked with such ardour and success that, at the early age of twenty-six, his name became well-known among biologists.

Russian biologists were among the first to recognize the great significance of the Evolution theory in the domain of Embryology, and the chief advance made in this science during the sixties was due to Kowalevsky and Metschnikoff.

In 1866, Kowalevsky published two closely allied series of researches on the development of *Amphioxus* and on that of the Ascidians, works which are remarkable not only for the novelty of the results obtained but for great clearness and accuracy. Kowalevsky demonstrated the presence of the notochord in Ascidian embryos and caused quite a sensation by showing that these animals, until then supposed to be invertebrates, belong to the vertebrate phylum.

In 1868, Kowalevsky was appointed professor at the Kazan University; he remained there only one year, during which he published his "Embryological Studies on the Worms and the Arthropoda," a work which testifies to marvellous energy and resolute conquest of difficulties, at a time when microtomes were hardly known and when carmine was the only stain. These embryological studies were epoch-making; they established the uniformity of the first processes of development in all multilaminar animals and overthrew many views then prevalent. In Worms and Arthropods, as in Vertebrates, Kowalevsky demonstrated the laying down of the organs in the form of germinal layers, these latter containing the rudiments of the whole complex of organs.

It was Kowalevsky who discovered in *Phoronis*, the Ctenophora, *Sagitta*, *Lumbricus*, and the Brachiopoda the embryonic stage since
well known as the Gastrula stage. Haeckel utilized his observations when he propounded his Gastrula theory. Kowalevsky himself, who only drew conclusions from strictly verified facts, refrained, as a rule, from theorizing. Another well-known theory, the coelomic theory, was founded on Kowalevsky's discovery that, in Amphioxus, Sagitta, and the Brachiopoda, the mesoderm develops in the form of protruding sacs from the ectoderm. He himself recognized the significance of this discovery, but considered the establishment of a hypothesis premature.

In 1869, Kowalevsky accepted a professorship at Kieff, where he was an active member of a new Society of Naturalists, to which he contributed many of his discoveries, among others that of the connection which exists between the alimentary and the spinal canals in the embryos of Sharks. This observation led to the revelation of a similar connection in all Vertebrate embryos. To this Society also, Kowalevsky communicated his discovery of the planaria-like female of Bonellia, which differs so greatly from the male form; also the observations on the budding of Perophora, which have formed the basis of all more recent investigations into the budding of the Ascidians. Other papers threw important light upon the connection between the asexual processes of multiplication and the metagenesis of the Salpidae.

It was during Kowalevsky's sojourn at Kieff that the Brachiopoda, which were then classed as Molluscs, were carefully investigated by him. With this object, he visited the Red Sea and Algiers, ardently pursuing his researches under great difficulties, spending days and nights in the boats of coral-fishers, sharing their poor fare and exposing himself to the burning sun and other discomforts. The brilliant results he obtained still place him in the first rank among investigators of this group of animals, which were considered by him to be closely related to the worms.

In 1873 Kowalevsky accepted a chair in the Odessa University, and while there studied many marine forms, investigating the ontogeny of the Hydroids, the Acephala and the Actinia, the Aleyonaria and the Lucernaria, and many Molluscs.

From 1884 and onward, Kowalevsky worked on a somewhat different plan. Without renouncing morphological work, for he produced after this date excellent monographs on the metamorphoses of the Diptera and the development of the Scorpions and the Solpugidæ, he took up questions bordering on physiology and anatomy. He published many treatises elucidating obscure organs in various Invertebrates, using the method of injecting colouring-matter into the living organism, and thus revealing whole series of organs until then unknown, but of great significance for the life of the animals in their conflict with micro-organisms. These he called the blood-cleansing organs.

In 1890 Kowalevsky settled in St. Petersburg at the Academy of Sciences, and while there laboured indefatigably in collecting funds for and organizing the Marine Biological Station at Sebastopol, which he believed would be of great value as a centre
for the investigation of the fauna of the Black Sea and of the Sea of Marmora. In 1893 he gave up lecturing and devoted himself entirely to research, spending nearly all his time in his laboratory and continually adding to his interesting discoveries. Some of the last months of his life were spent on Prince's Island in the Sea of Marmora, investigating the development of such forms as *Hedyle, Cheloderma* and *Pseudovermes*, his observations on which were published only after his unexpected death in November 1901.

Absolute devotion to Science and untiring energy in her service were the chief characteristics of Alexander Kowalevsky. He was an ardent evolutionist, and devoted himself to following out by the aid of the Evolution theory the many and complex problems of animal life. He modestly disclaimed praise for the enormous amount of work he accomplished, saying that he no more deserved praise than a sportsman, since science afforded him the same pleasure as sport affords the sportsman. All who knew him personally were impressed with his simplicity and modesty; he was conciliatory and polite to all, except perhaps some few whom he regarded as the opponents of Science, and seemed to ignore the fact that he was himself a great scientific authority.

The original character and great value of his work made his name celebrated in all countries of Europe, the scientific societies of which vied with one another in conferring honours upon him. He was elected Foreign Member of the Linnean Society, 1st May, 1884, and died at Odessa on 22nd November, 1901.

\[M.\ \text{Bernard.}\]

Charles Maries was born at Stratford-on-Avon, and went to school at Hampton Lucy from 1861 to 1865, at the grammar-school under Prof. George Henslow, after which he went to be with his brother at Lytham, remaining seven years in those nurseries. Mr. Maries spent some time in Messrs. Veitch's establishment at Chelsea, where his employer, Mr. H. J. Veitch, selected him to explore certain parts of China and Japan, known to be rich in flowering shrubs and trees, many not yet introduced into cultivation in Europe. Besides these, he sent home herbaceous plants and conifers; the latter were described by Dr. Masters in our Journal (Botany, xviii. 1880, pp. 473–524).

In this journey, leaving England in February 1877, he reached Shanghai, and went on to Japan, where he inspected the nurseries at Yokohama and Yedo, and began conifer-hunting at Nikko, rediscovering *Abies Veitchii*; he lost over 20,000 specimens by wreck, ultimately reaching Yokohama, and sailing for Hong Kong on Christmas-day. He attempted to collect in Formosa, but was not successful. The following summer found him at Chin Kiang and Kiu Kiang; at the latter place he was incapacitated by sun-stroke for two months; he again visited Japan, and reached Hankow in December. He spent the next season on the Yangtze, and in the Ichang gorges; amongst the 500 living plants sent home, was that curiosity the square bamboo, besides a large quantity of seeds of Conifers, Maples, Oaks, and other trees.
At the time of his death he was Superintendent of the gardens of the Maharajah of Gwalior, having previously been in charge of those at Durhunghah, India; passing away on 11th October, 1902, and leaving a widow and two children.

He was elected Fellow on 3rd March, 1877. He also received the distinguished award of a Victoria Medal of Honour from the Royal Horticultural Society. His published papers were confined to gardening papers and the Journal of the Royal Horticultural Society; but his title to lasting remembrance lies in his success as a plant-collector.

The death of Dr. Richard Chandler Alexander Prior, who died at his residence, Regent's Park, on 5th December, 1902, removes one of the most constant attendants at our meetings until increasing weakness confined him to his house and room.

The following account is based upon memoranda drawn up in 1899, when ninety years of age, by the subject of this notice. He was born on 6th March, 1809, at Corsham in Wiltshire, his parents' surname being Alexander; his horoscope was drawn on the day of his birth by Wm. Sainsbury, M.D., and carefully preserved. When eight years old, he was sent to the Rev. J. T. Lawes's school at Marlborough, and five years later to the Charterhouse, when the Rev. J. Russell, D.D., was headmaster. At the age of 17 he went up to Wadham College, Oxford, Dr. Symons being then subwarden, and took his degree in 1830.

The same year, having decided to study medicine, he came to London, and began his studies at Mayo's Anatomy School, Great Windmill-street, and also attended Faraday's chemical lectures. The next year, 1831, he entered St. George's Hospital, but his health broke down; he had typhus fever the first winter, and continuing unwell, the following year went to Belgium for change of air, and then proceeded to Weimar, where he spent the summer. The next medical season was spent at Berlin, and then, in 1833, he resumed his studies at St. George's Hospital. At this time he attended Dr. Robert Dickson's lectures on botany, "to which I have to trace the greatest happiness of my subsequent life" being his own testimony. After one season at Edinburgh, Mr. Prior took his M.B. degree at Oxford, and settled in practice at Bath in 1836. But here, fate was against him: he was ill all the time he was in residence there, fifteen months. "A most malignant fever broke out in the street where I had lived, Edward Street, shortly after I left, and attacked the inmates of nearly every house on one side, many of whom died. It was then discovered that the main sewer was choked up, the cause, no doubt, of my constant indisposition while I lived there, and especially of the sore throats to which I was subject." He removed to Chippenham, became Fellow of the Royal College of Physicians in 1840, and in the spring of 1841, when he gave up the practice of medicine, he went to Gratz in Austria for three years. It was during his stay here that he contributed two papers, describing his excursions into.
Upper and Lower Styria, to the Botanical Society of Edinburgh, accompanied by a parcel of the plants mentioned. These papers were printed in the 'Annals and Magazine of Natural History,' vols. xvii. & xviii., for 1846. In the course of his rambles, he says:—"At an inn at the foot of the mountain [the Lantsch] the people spoke a jargon that I had great difficulty in understanding, and they had as much, I suppose, in comprehending me. The innkeeper told me, begging my pardon, that I did not speak German very well, and should stay a month or two with him in the Breitenau to learn the language. I asked him if he did not think I had better opportunities in Gratz. 'Oh no,' he said, 'they talk there according to book—Nach der Schrift.'" On the same page is a description of Vest, "the most untidy botanist ever known," and an account which Dr. Maly gave of his herbarium.

The next year was devoted to botanising in Dalmatia, and its southern vegetation. Passing through France, he paid a flying visit to England in 1844, and in the autumn of the same year went to Italy. He spent the winter in Naples and visited Sicily the following spring, collecting largely and getting personally acquainted with Gussone and other botanists. He remarks that he was "very much struck during his excursions in the south with the circumstance that neither in the Kingdom of Naples, nor in Sicily, is there anything like the scattered hamlets and cottages that we find everywhere in England and Germany—a result of the comparative insecurity of life and property, and a cause of the preference of southern people for the pleasure of a town life. Hence the little attention paid to natural history by them, both in ancient times and modern."

In April 1846 he sailed for the Cape, and lived thirteen months in Capetown; in 1847 going to Georgetown and Uitenhage. He was at the former place during the heavy rains of that spring, the heaviest for 22 years, causing inundations: "after which I went a journey over the Carroo in an ox-waggon, the effect of which I felt for several years in the singular habit of connecting all noises that I heard in my sleep with the cries of the wild animals of that desert. This seems the more strange, as I am not conscious that I ever dreamed of being aboard ship, although the circumstances of a sea-voyage are more striking to a landsman than are those attending a land-journey." He made large collections of plants, and came home in 1848.

The love of travel prompted him the next year to sail in April for the United States, where he botanised till November; then proceeded to Jamaica, and stayed till August. While in Jamaica he resided at Moneague, in the mountains of St. Ann's, and ascended the Blue Mountain Peak. He returned by way of New York and Canada in the autumn of 1850, and reached England in November. He then took a house at Hammersmith, which remained his home for eight years, though he made occasional continental trips, visiting Germany, France, Denmark, Norway, and Italy.
In the spring of 1859 my maternal uncle died, leaving me his landed property, requesting me to take his name, which I did, and thenceforth subscribed myself 'Prior.' Since my return from America in 1850 I have devoted myself more to literature than botany, finding, like many others, that after a rambling life in quest of plants it is very irksome to work them up in the cabinet. In 1859 he published translations of 'Ancient Danish Ballads' in three volumes, and in 1863 his 'Popular Names of British Plants,' which is now in its third edition. "For forty years I have spent the summer half of the year at Halse, near Bishops Lydeard, seven miles west of Taunton, and the six winter months at York Terrace, London, occupying myself with literary pursuits, while the summer months were devoted to croquet" [he prided himself on his lawn at Halse House] and antiquarian researches. A translation of 'Ancient Danish Ballads' required a perusal of all the ballad literature that I could obtain. A small work upon the 'Popular Names of British Plants' afforded me much amusement and no little labour in reading up old herbals. In these studies forty years have sped away very rapidly, and I am now (in 1899) ninety years of age, very feeble, but in the enjoyment of good general health. I find that I have out-lived all but one of my contemporaries [Nelson Goddard, Esq.,] school-fellows, and college friends." These are the closing words of his autobiographic sketch. For some years past his increasing weakness had kept him away from the Society, but until he was long past eighty he used to attend the meetings regularly, and by virtue of his position as senior member of the Club took the Chair at the meetings of the Linnean Club in the absence of the President. He was never married, but greatly admired the other sex, and was fond of paying them an old-world attention and deference, which recalled past manners. More than once he served on the Council; and it is to him that the Society owes its optical lantern, a gift made in 1890 in acknowledgment of a long enjoyment of the Fellowship of the Society, which dated from 6th May, 1851. An attack of influenza was the actual cause of Dr. Prior's death, which took place as recorded in the first paragraph. By will he left a legacy of £100 to this Society, and his herbarium to the Royal Botanic Gardens, Kew. His estate passes to Sir Prior Goldney, Bart.

Botanically our late Fellow is commemorated in the genus Prioria, dedicated to him by Grisebach (Flora British West Indies, p.215) on account of his support of West Indian botany. Prioria copaifera was further investigated by Mr. Bentham, and figured in our 'Transactions,' xxiii. (1861) pl. 40.

The Rev. Thomas Wiltshire, who died at his house, Granville Park, Lewisham, 27th October, 1902, was born in London on 21st April, 1826, the son of Sampson Coysgarne Wiltshire and Sarah (née Goodchild). His father was a man of business in the City and a Freeman of the Clothworkers' Company, who possessed much facility with pencil and brush, an aptitude which reappeared
in our late Fellow. His father died while the son was young, and his mother married again. Mr. Wiltshire never went to school, but was prepared by a tutor for the university. He entered King's College in 1845, and obtained the mathematical prize in the following year; then going to Cambridge. He graduated in 1850 from Trinity College, placed among the Senior Optimes in the Mathematical Tripos; and in June of the same year was ordained deacon by Dr. Murray, Bishop of Rochester, and priest in December 1853 by Dr. Blomfield, Bishop of London, the year of his proceeding M.A.

He had married in 1850; and he threw himself into his parochial duties, first as curate at Riddings in Derbyshire, next at Brompton, and then at St. Nicholas Olave, Bread-Street Hill, as Rector. When the site of this Rectory was wanted for the District Railway in 1868, he removed to Lewisham, where he spent the rest of his life. which remained connected with St. Clement's Eastcheap (Evening Lectures) and St. Nicholas Cole Abbey (Curate).

The scientific side of Mr. Wiltshire's life may be stated as beginning with his election into the Geological Society in 1856. In 1869 he unsuccessfully stood as candidate for Professor of Geology at King's College, London; but in 1872 he became Lecturer in Geology there, Assistant Professor in 1881, and full Professor of Geology and Mineralogy in 1890: he became Fellow of that College in 1889, and retired from his Chair in 1896. His first pamphlet, 'The Red Chalk of England,' appeared in 1859, followed in 1862 by 'The Ancient Flint Implements of Yorkshire'; in 1869 he brought out his 'Chief Groups of the Cephalopoda' and 'The Red Chalk of Hunstanton.' From 1863 to 1901 he was Secretary to the Palæontographical Society, and held similar position in the Ray Society from 1872 to the day of his death. He was active also in technical education, and was a member of the Council of the City and Guilds of London Institute, representing the Clothworkers' Company, of which he had become Freeman and subsequently Master.

He was elected Fellow of our Society, 21st December, 1865; and was also Fellow of the Royal Microscopical (1857), the Royal Astronomical (1860), the Royal Geographical (1866); a Life Member of the Society of Arts (1888), and of the Geological Society of France (1870). He was one of the founders of the Geologists' Association, and President, 1859-60. The British Association also claimed him as a member.

The "Wiltshire Collection" of fossils was presented by him in 1893 to the University of Cambridge, and placed in the Woodwardian Museum; this collection consisted of many thousand specimens, and was especially rich from the Lower Greensand, Gault, Upper Greensand, and Chalk. The "Wiltshire Collection" of minerals was presented in 1897, and is now in the Mineralogical Museum, Free School Lane; it numbers 2500 specimens. In 1899, following these gifts, he received the Degree of Sc.D. from his old University. Finally may be mentioned, a gift was made to
the University to found a Prize for proficiency in Geology and Mineralogy, eligible to those who have passed Part I. of the Natural Science Tripos and not of more than ten Terms' standing.

On Christmas Eve, 1901, he fell when returning home, suffering a compound fracture of the right thumb; but the end was approaching, though he died practically in harness to the last. He preached on Sunday evening, 26th October, 1902, at St. Clements, and came home in apparent good health; between one and two in the morning he complained of severe pain in the chest, but was relieved by some simple remedies, and he lay down to sleep again, during which he quietly passed away, without again waking, from angina pectoris.

The writer has to thank Mr. E. W. Wiltshire, son of our deceased Fellow, for much of the foregoing information.

June 4th, 1903.

Mr. George Sharp Saunders in the Chair.

The Minutes of the Anniversary Meeting, 25th May, were read and confirmed.

Messrs. Edward Alexander Newell Arber, George Wallace Eustace, and Robert Alexander Robertson were elected, and Mr. Montague Frank Hopson was admitted a Fellow of the Society.

The Chairman announced that the President had appointed the following to be Vice-Presidents for the ensuing year:—Mr. Frank Crisp, Mr. C. B. Clarke, Prof. J. B. Farmer, and Mr. A. O. Walker.

Dr. Hocken, F.L.S., of Dunedinn, New Zealand, reminded the Society that the next biennial meeting of the Australasian Association for the Advancement of Science will be held at Dunedinn, in January 1904; and that the Members would welcome any Fellows of the Linnean Society who might be able to pay a visit to New Zealand on that occasion; every facility for travelling at special rates to visit the celebrated scenery will be afforded by the New Zealand Government, and Dr. Hocken will be happy to give detailed information to prospective visitors.

Mr. R. Morton Middleton, F.L.S., exhibited a holograph letter from Linnaeus to Philip Miller, dated Upsala, 3 August, 1763, and read a translation of the same. A few remarks were added by the General Secretary.

Mr. F. N. Williams, F.L.S., showed a series of 100 drawings of British Composite, 20 being Hieracea, drawn in pen-and-ink by Mr. E. W. Hunnybun, of Huntingdon, an accomplished artist and British field-botanist.
Sir Dietrich Brandis, K.C.I.E., F.R.S., F.L.S., exhibited specimens of Gelsemium elegans which Mr. Smales, Deputy Conservator of Forests, had sent him from Upper Burma. It is known there, as well as in China, as a most deadly poison. Mr. Smales writes: "Very deadly creeper; decoction of roots kills instantly, leaves also fatal." The alkaloid seems to be similar to strychnine and gelsemine, the product of species of Styrchnos and of the North-American shrub, Gelsemium sempervirens, both of the Order Loganiaceae.

He also exhibited a most remarkable specimen received from the Tharaundi Forests in Lower Burma: a hollow cylinder, about 12 inches high and just under 3 inches in diameter, of a soft but tough white leathery substance, which had grown as the lining of a Bamboo-joint. This was identified by Mr. G. Massee, F.L.S., from the presence of characteristic conidia on the inner surface of the cylinder, with Polyporus anthelminticus, Berk., which forms thick irregularly-shaped masses on old Bamboo culms near the ground. An analogous case, to which Mr. Massee drew attention, is that of the Polyporus which grows on Sambucus nigra, the mycelium of which is often found in the white pith of the Elder, sometimes entirely displacing the pith.

Colonel George Colomb sent for exhibition a fragment of a branch of a Thorn, which had been given to him by Mr. Thoms, gardener in Hyde Park. This branch shows the mischief done to thorns near London by larvae which had been identified as those of the Wood Leopard Moth, Zeuzera Æsculi, Linn. The House-Sparrow was stated to destroy numbers of the perfect insect on their emergence. Further remarks were contributed by Dr. D. Sharp, the Chairman, and Mr. E. M. Holmes.

The following papers were read:

2. "Notes on the Transition of Opposite Leaves into the Alternate Arrangement: a new Factor in Morphologic Observation." By Dr. Percy Groom, F.L.S. (See p. 48.)

June 18th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Messrs. Albert William Bartlett, John Clayton, and David Thomas were elected, and Messrs. E. A. Newell Arber and George Wallace Eustace were admitted Fellows of the Society.

A volume of portraits of eminent men of science, compiled by Dr. R. C. A. Prior, about 1854, was presented to the Society by
his executor, Sir Prior Goldney, Bart., and for this a special vote of thanks was passed.

The Rev. T. R. R. Stebbing, F.R.S., F.L.S., on behalf of Mrs. Sladen, presented a portrait in oils, kitcat size, by the late H. T. Wells, R.A., of the late Mr. Walter Percy Sladen, who from 1885 to 1895 was Zoological Secretary. The President, in accepting the gift on behalf of the Society, submitted the following Resolution, which was carried by acclamation:—

"That the portrait of the late Walter Percy Sladen, for ten years Secretary of the Linnean Society, now offered on behalf of Mrs. Sladen, be accepted, and that the grateful thanks of the Society be conveyed to the Donor."

Mr. C. H. Wright, A.L.S., exhibited seeds of a new species of *Aeschynanthus*, described in a paper subsequently read.

Mr. C. B. Clarke, F.R.S., F.L.S., showed specimens of a variety of the Primrose, *Primula vulgaris*, Huds., with remarkably small flowers, to which he proposed to give the varietal name *Chloe*. (He subsequently considered that it was probably a hybrid between the Primrose and the form of the Cowslip which is found on the Hampshire downs.)

A photograph sent by Mr. J. Waby was shown, and an extract from his letter received with it was read, stating that two specimens of *Corystha eulata* in the Georgetown Botanic Gardens, of similar age and planting, were photographed: one had followed the normal course, flowered, fruited and died; the other, instead of flowering, had developed a secondary crown of leaves.

Mr. Frederick D. Ogilvie, of Harrogate, sent for exhibition a water-colour drawing of the Cowthorpe Oak, taken in 1902, thus bringing down the record one year later than the photographs shown by Mr. J. Clayton, on 19th February last, at the General Meeting held on that day.

The Rev. John Gerard, S.J., F.L.S., showed a fresh specimen of the prolificous form of *Geum rivale*, which he had received from Stonyhurst, Lancashire, a few days before.

The following papers were read:—

3. "On the Occurrence of Rudimentary Horns in the Horse." By Dr. G. W. Eastace, F.L.S. (See p. 45.)

The President reminded the Society that exactly a year ago he had the honour of giving an account of some observations upon the action of the enzyme contained in the secretion of Nepenthes. That enzyme, he then explained, not only possesses the property of peptonising the higher proteids (e. g. fibrin), but is also proteolytic, decomposing the proteid molecule into non-proteid nitrogenous substances such as leucin and tryptophane. The proof of this is afforded by the fact that liquids containing proteids that have undergone digestion give the tryptophane-reaction; that is, a pink or violet colour on the addition of chlorine-water.

Since that time many other plants have been investigated with the object of ascertaining (1) whether or not a digestive enzyme were present, and (2) of determining the nature of its action. In almost all cases the presence of a proteolytic enzyme has been demonstrated. In the first instance plants which were known to possess a peptonising enzyme were made the subject of experiment, with the result that the enzyme was in all cases found to be proteolytic. This is true of the juice of the Pineapple (Ananas sativus, Schult. f.), of the latex of the Papaw (Carica Papaya, L.), of the Fig (Ficus Carica, L.), of the milk of the Coco-nut (Cocos nucifera, L.), of the seeds of Vicia Faba, L., and of Hordeum vulgare, L., of Yeast (Saccharomyces Cerevisiae, Meyen), and of the Bacteria of putrefaction (see ‘Annals of Botany,’ vol. xvi. 1902, p. 1).

The investigation was then extended to different parts of widely differing plants. In view of the fact that the proteids occurring naturally in plants are such (e. g. globulins and albumoses) as are readily digested, whereas those generally used (e. g. egg-albumin, fibrin) are much more resistant, the material to be digested was supplied in the form of the commercial product known as Witte-peptone, a mixture of albumoses and peptones. It was found that, with few exceptions, an enzyme was present which, as proved by the tryptophane-reaction, proteolysed these substances in 4-20 hours. Only those experiments are relied on in which the period of digestion was too brief to admit of putrefaction; or in which an antiseptic (H. C. N, or chloroform-water) was employed. The digestive power is destroyed by boiling.

The plants and parts of plants investigated are the following:—

Fruits: Melon; Cucumber; Tomato; Vegetable Marrow; Black and White hothouse Grapes; Pear (Beurré Hardi); the Orange, where the peel, but not the juice, was found to digest; Banana.

Lacticiferous plants: Euphorbia Characias (shoots); leaves of the Lettuce.

Seeds: Green Peas; Wheat-Germ.

Stems: Vegetable Marrow; Dahlia variabilis; Mirabilis Jalapa; Helianthus tuberosus.
Bulbs : Onion; Tulip; Hyacinth.

Tubers : Jerusalem Artichoke; Potato.

Leaves : Cabbage; *Tropaeolum majus*; *Dahlia variabilis*; *Mirabilis Jalapa*; *Spinacia oleracea*; *Holcus mollis*; *Phalaris canariensis*; *Praunus Lauro-cerasus*; *Helianthus tuberosus*; *Ricinus communis*; *Ajuga graveolens* (both green and etiolated); *Pelargonium zonale*; the Fern *Scolopendrium vulgare*, but here digestion was slow.

Roots : Turnip; Tomato; Vegetable Marrow; *Phaseolus multiflorus*; *Mirabilis Jalapa*; *Daucus Carota*.

Fungi : the Mushroom.

Having established the presence of a proteolytic enzyme, the next step was to ascertain whether the tissues or juices of the plants under investigation were capable (like the Pineapple, the Fig, the Papaw, etc.) of peptonising the higher proteids. Evidence of the peptonisation of fibrin and of the caseinogen of milk was obtained in the case of the juice of the Melon, of the watery extract of the Lettuce, and of the tissue of the Mushroom. The results in other cases were either doubtful or negative. There was frequently evidence that the proteids naturally existing in the vegetable substances themselves had been digested.

The experiments definitely establish the fact that an enzyme which actively proteolyses the simpler forms of proteid is present in all parts of the plant-body. But the question as to the precise nature of this enzyme still remains to be answered. Where proteolysis is accompanied by peptonisation, it may be inferred that the enzyme is allied to the trypsin of the animal body. Where no peptonisation, but only proteolysis, can be detected, it seems probable that the enzyme is allied to the crepsin recently discovered by Cohnheim in the small intestine. Possibly more than one enzyme may be active in certain cases.

The conclusions arrived at depend entirely upon the reliability of the tryptophane-reaction as evidence of proteolysis. From what is known as to its chemical composition and as to the conditions of its formation in digestion, there can be no doubt that tryptophane is a product of the disruption of the proteid molecule. The point that had more particularly to be determined was whether the substance giving the colour-reaction with chlorine in these experiments is really tryptophane. The isolation of tryptophane is a difficult process, and was not attempted. The chemical identity of the substance is, however, established by the fact that its chlorine-compound was found to give the same absorption-spectrum as does that of tryptophane, namely, a band in the green on the yellow side of the thallium-line.

Mr. A. G. Tansley, F.L.S., in his paper, illustrated by lantern-slides, “The Relation of Histogenesis to Tissue-Morphology,” dealt with a few points bearing on the relation of histogenesis at the apex of the stem in the Pteridophyta to the morphology of the tissue-regions in the adult stem.
In the first place, the variability of the position marked by the first tangential wall in the different great groups of Pteridophyta was pointed out; and Van Tieghem's statement that it coincided, in the Filicinae, with the outer limit of the monostele or (in the polystelic forms) of the ring of steles, was held to rest on far too narrow a basis of evidence. This outer limit is said to correspond in most cases with the external limit of the protophloem, the sheath-layers (pericycle and endodermis) of the monostele being supposed to be derived from "cortex." However, the histogenetic origin of these sheath-layers is extremely variable; they are derived from "cortex," or from a separate layer (coleogen), or sometimes partly from the young stele itself. The most striking deviation at present known in Ferns is found in Schizcea malaccana, where each primary segment of the apical cell divides into an anticlinal series of three cells, of which the middle one is an initial of the vascular ring and the sheath-layers. If these histogenetic differences were to be seriously taken as a clue to morphological (phylogenetic) distinctions, the most patent absurdities would result, e.g. the outer endodermis would not be homologous in different Ferns, a practically impossible conclusion. The consideration of the homologies of tissues must be based primarily on a common-sense comparative consideration of adult structures.

The question of "pith" in Ferns was then touched upon, and it was concluded that while the pith of Schizcea is intrastelar, histologically part of the amylopl, and developed in place of the central tracheids of a primitive protostele, remains of which are found in some species of the genus, the large-celled pith enclosed by an internal endodermis, which begins to make its appearance in Schizcea and is normal in solenostelic Ferns, is a new tissue, phylogenetically the descendant of the intrastelar pith, or in other cases of the central phloem, though in connection with, and often histologically identical with the cortex. In considering this question, a contemplation of the actual histogenesis of the central tissue prevents our using the phrases "internal cortex" and "intrusion of cortex."

Mr. L. A. Boodle, F.L.S., followed with a paper entitled "Stelar Structure of Schizcea and other Ferns," illustrated by lantern-slides. In the rhizome of Schizcea dichotoma the stele has normally a ring of xylem enclosing a central pith, which is usually largely sclerotic. A group of tracheids sometimes occurs in the pith, and is either isolated or connected with the normal ring of xylem. Endodermal pockets are present in connection with some of the leaf-traces, and may pass obliquely inwards to near the centre of the pith. Besides these an isolated inner endodermis is occasionally found in the pith. The central tracheids and the isolated inner endodermis appear to be vestigial; the former are probably remnants of the central part of the xylem of a protostelic form, such as is seen in Lygodium, though it is possible that they may represent a centrally placed protoxylem embedded in
parenchyma, as found in *Hymenophyllum seabraum*. The isolated inner endodermis is probably a relic of a previously better-developed system of endodermal pockets, or of the latter connected with a central tube of endodermis, but without internal phloem (*i.e.*, in the latter case, the ectophloic siphonostelic type of Jeffrey). The third possibility, that the structure of *Schizaea* may have been reduced from the solenostelic type (*i.e.*, with internal phloem and endodermis), such as is found in some species of *Anemia*, is not excluded, though no evidence can at present be brought forward in support of this view.

December 4th, 1902.

Leguminous Plants recommended by Virgil to restore Exhausted Soil. By Dr. George Henderson, F.L.S.

A few days ago it was pointed out to me by my friend Sir Annesley De Renzy that in Virgil's first Georgic, line 73, the poet, after recommending a system of fallowing, proposes as an alternative, and a means of restoring the fertility of the soil, that before taking a second grain-crop, the soil should be re-fertilized, by planting it with a leguminous crop. The Romans, it would seem, believed that these plants actually enriched the soil, especially if the roots were ploughed in.

Virgil, Georgics I., lines 71–78.

> Alternis idem tonsas cessare novales,
> Et segnem patiere situ durescerce campum;
> Aut ibi flava seres mutato sidere farra,
> Unde prius letum siliqua quassante legumen,
> Aut tenuis foetus vice, tristisque lupini
> Sustuleris fragiles calamos, silvamque sonantem.
> Urit enim lini campum seges, urit avenae,
> Urunt Lethæo perfusa papavera somno.

[Translation.]

You will also permit your fields from which you reap your harvest to lie idle each alternate year and the indolent ground to be strengthened by rest.

Or the season being changed you shall sow the golden barley whence formerly you had borne away the luxuriant pulse, in their rattling pods or the slender produce of the Vetch, or the bitter Lupin's fragile stalks and rustling straw.

For a crop of flax burns up the soil and so does one of oats, and so do the poppies steeped in the slumbers of Lethe.

It seems remarkable that the late discoveries about the nitrification of soil by means of the roots of the Leguminose should have been foreshadowed so long ago by a people who could have known nothing of chemistry or vegetable physiology. It also seems strange that it took so long to ascertain anything definite as to
how the leguminous plants restored the soil, and no doubt there is still much to be discovered regarding it.

Virgil mentions the lupin as a field-crop, we only know it as a flower grown for ornament; but to the present day in Germany lupins are grown very extensively on very poor soil every third or fourth year, simply to be ploughed in to enrich the soil; the lupin is so bitter that no animal will eat it, but sometimes it is used in Germany as bedding for the cattle. The lupin \(\text{[Lupinus luteus, Linn.]} \) thus grown has a yellow flower.

February 19th, 1903.

Some Remarks on the possible Uses of Essential Oils in the Economy of Plant-life. By Dr. George Henderson, F.L.S.

Everybody knows that moisture in the air tends to prevent frost at night, but it is not always realized that the moist air, even when clear and when there are no clouds, still acts in the same way, and stops radiation from the surface of the ground.

Professor Tyndall, thirty-two years ago, experimenting on this subject (see his 'Fragments of Science'), found that infinitesimal quantities of essential oils in the air enormously increased its power of absorbing heat-rays of low tension.

I am not aware that anyone has applied this fact as serving any useful purpose in plant-life, but it seems to me that in this way these oils may often prevent injury from frost at one of the most critical periods of the plant's life, namely, when it is setting its fruit.

In the low hills of the Punjab Himalaya, from 1000 to 4000 feet above the sea and 10 to 20 miles across, in the end of March and in April, when most of the plants are coming into flower, the blossoms are apt to be blighted by late frosts, at least one would expect this; but at that season the air is filled with the odours of essential oils from these blossoms to such an extent as to be at times (and especially on a still night, when frost most often occurs) quite overpowering.

My theory is that these essential oils help to prevent radiation at night, and thus preserve the blossoms and allow the fruit to set; after all, it is usually only a matter of four or five degrees' fall of temperature just at sunrise which does all the damage.

I mention the Punjab Himalayas because it was there the matter first attracted my attention, and probably nowhere else is there more risk of damage from late frosts.

Tyndall states that, taking the absorptive power of dry air at 1, moisture added to the air increases this power to 72; but an infinitesimal trace of

- Oil of Rosemary gives 74
- Oil of Laurel 80
- Camomile flowers 87
- Cassia 100
- Spikenard 355
- Aniseed 372
I do not know if Tyndall's experiments have been followed up by any botanist, but if not, I think this will form an interesting subject for further investigation.

April 2nd, 1903.

Dr. D. T. Gwynne-Vaughan gave a lantern-demonstration of his paper, "On the Comparative Anatomy of the Cyatheaceae and other Ferns." He stated that the vascular system at the very base of the stem of a young plant of Alsophila excelsa, R. Br., is found to be protostelic, and as it advances towards the more complicated structure of the mature stem it passes through a series of transitional stages which in certain other Ferns are retained as the permanent structure of the full-grown plant.

The first departure in the young plant from the protostelic type of structure is due to the appearance of a core of phloem within the substance of the xylem of the protostele. This gives rise to a type of vascular structure which may be found in Davallia repens, Desv., as the permanent structure of the mature stem. Then, in the young plant, the endodermis and ground-tissue lying on the adaxial side of the departing leaf-traces are prolonged downwards into the internal core of phloem. These decurrent strands of ground-tissue at first end blindly in the internal core of phloem before reaching the node below, giving rise, in this manner, to a type of stele which is also to be found in the mature stem of Davallia pinnata, Cav. When the decurrent ground-tissue becomes continuous from one node of the young plant to the other, a solenostelic structure is reached entirely similar to that found in the mature stems of a large number of different Ferns.

It is suggested that this series of vascular types illustrates the actual manner in which the transition from protostely to dictyostely took place in the Cyatheaceae and Polypodiaceae. That is to say, the ancestral protostele of these two orders never contained a definite pith, and its conversion into a solenostele was initiated by the replacement of some of its xylem elements by phloem, later on by endodermis and ground-tissue. This suggestion is not in any way affected by the question as to the cortical or stelar nature of the internal ground-tissue.

The xylem in the steles of Fern-stems seems to be differentiated in two different ways. Either the protoxylem elements are more or less evenly distributed all round the periphery of the xylem mass, or else they are localized in definite endarch or mesarch strands. In the latter case the protoxylem strands of the stem are always related directly or indirectly with those in the leaf-trace.

In the more primitive Pteridophyta in which the influence of the leaf-trace upon the stem-stele is practically negligible, the protoxylem is nearly always exarch, and it would seem that endarchy originated in the leaf-trace and that, in general, it appeared in the stem only when the influence of the leaf-trace had begun to dominate the structure of the latter.
June 4th, 1903.

Dr. Percy Groom, F.L.S., read a paper entitled "Notes on the Transition of Opposite Leaves into the Alternate Arrangement: a new factor in morphologic observation." The author stated that his observations began on Atriplex rosea, and to make a graphic representation of results, he plotted the length of the internodes in a given manner, which produced a zigzag curve: when this principle was applied to Chenopodium and Salzota an entirely similar result came out, and a zigzag course was plotted, due to the long and short internodes alternating. At first he suspected this might be due to its nearness to salt water, but inland specimens told the same tale, and neither the influence of day and night nor of salinity could account for it. His belief was that the true solution lay in an upward displacement of one of the two leaves at each node from a primitive opposite phyllotaxis. Such a displacement by fusion is admitted in the opposite-leaved Salicornia, in which both leaves are fused with the main stem up to the succeeding node. Continuing his observations, the author examined Scrophularia nodosa, which exhibited a transition from an opposite phyllotaxis to an alternate arrangement in the inflorescence. Symphytum officinale showed a regular displacement-curve in its raised and fused axillary branches. Rhinanthus Cristagalli occasionally presented a curious anomaly: the leaves were commonly opposite, but sometimes became suddenly alternate, but in such instances the individuals showed some of the solitary leaves bilobed or succeeded at the next higher node by two asymmetrical laterally approximated leaves. Lysimachia vulgaris first showed opposite leaves, then by the process last described, splitting at the apex and becoming distinct, a whorl of four leaves finally appeared. The author laid stress on the fact that he had taken his species at random, as they came to his hand, and were not specially selected. Although this was only a preliminary statement of the facts observed, it embodied a long series of observations.

June 18th, 1903.

Dr. Eustace read a paper upon "Rudimentary Horns in Horses," in which he recorded the occurrence of bilateral osseous prominences on the frontal bones in two thoroughbreds, "Domain," aged 5, belonging to Mr. H. Bonas, and "The Swamper," aged 3. Both horses at the time of writing were under the care of Mr. Alfred Day, of Westergate. In the younger horse the bosses did not appear until the animal was six months old; in both the left boss was larger than the right.

The author stated that Mr. William Day remembered the same peculiarities being exhibited by "Mounseer," the property of Lord Rivers, and the winner of the Chester Cup in 1850.

It is of interest that "Mounseer," "Domain," and "The Swamper" are all descended from "Eclipse," which itself was the
great-great-grandson of "Darley Arabian," a horse purchased at Aleppo and shipped to England in 1705.

The author drew attention to a passage in Darwin's 'Variation of Animals and Plants under Domestication' (ed. 2, vol. i. p. 52), to the effect that "in various countries horn-like projections have been observed on the frontal bones of the horse: in one case described by Mr. Percival they arose about 2 inches above the orbital processes, and were 'very like those in a calf from five to six months' old,' being from half to three-quarters of an inch in length. Azara has described two cases in South America, in which the projections were between 3 or 4 inches in length; other instances have occurred in Spain." "The French translator of Azara refers to other cases mentioned by Huzard as having occurred in Spain."

Dr. Eustace considers that, although both of the two horses that formed the subject of his paper were of a delicate constitution, and Lord Rivers's horse died when only four years old, the prominences cannot be looked upon as exostoses due to disease. He considers the cases to be true instances of "reversion," the reappearance in a rudimentary condition of structures which once existed in a functionally perfect condition. Dr. Eustace is consequently led to question the accuracy of the view held by the late Mr. Romanes and others that true bilateral horns are peculiar to, and an evidence of later specialization among the Ruminants; and he regards it as probable that the possession of horns was a feature of the ancestral stock of the Ungulates prior to the differentiation of the Ruminants and the non-Ruminants.
ADDITIONS AND DONATIONS

TO THE

LIBRARY

1902-1903.

Aberdeen.

Aberdeen Working Mens’ Natural History and Scientific Society. No. 1. 8vo. Aberdeen, 1903.

XXI. Holothuries (Princesse-Alice). By Edgard Hérouard. (1902.)

XXII. Échantillons d’eaux et de fonds provenant des campagnes de la Princesse-Alice. (1901.) By J. Thoulet. (1902.)

Author.

Part I. Ranunculaceæ to Anacardiaceæ. Pp. i-xxxii, 1-325; Index i-xii; plates 1-12. (1899.)

" II. Conaraceæ to Cornaceæ. Pp. 326-737; Index i-xii; plates 13-25. (1900.)

" III. Caprifoliaceæ to Gentianaceæ. Pp. 738-1030; Index i-x; plates 26-43. (1900.)

" IV. Hygrophyllaceæ to Elæagnaceæ. Pp. 1031-1372; Index i-xi; plates 44-61. (1901.)

" V. Loranthaceæ to Lamiaceæ. Pp. 1373-1700; Index i-xi; plates 62-76. (1902.)

" VI. Alismaceæ to Filices. Pp. 1701-2015; Index i-xii; plates 77-88. (1902.)

Bell (Francis Jeffrey). Guide to the Coral Gallery (Protozoa, Porifera or Sponges, Hydrozoa, and Anthozoa), in the Department of Zoology, British Museum (Natural History). Pp. 73. See British Museum—Guide-books.

Berlin.

Liegf. 18. Aves, Paridae, Sittidae und Cercithiidae, von C. E. HELLMAYR. 1903.

Bibliotheca Botanica (continued).

Bibliotheca Zoologica (continued).

Bibliotheca Zoologica (continued).

Watson Botanical Exchange Club.

— The Country Month by Month. See Owen (Jean A.) J. C. Galton.

Brisbane.

No. 4. Roth (Walter E.). Games, Sports and Amusements. 1902.

British Association for the Advancement of Science.

British Museum (continued).

Birds.

Guide-books.

British Museum (continued.)

Handbook of Instructions for Collectors, issued by the British Museum (Natural History); with Illustrations. Pp. iv, 137. Svo. London, 1902.

Buckhurst Hill.

The Coming of Age of the Essex Field Club. A Record of Local Scientific Work, 1880–1901. The Presidential Address delivered at the 22nd Annual General Meeting of the Club on March 22nd, 1902. [Reprinted (with separate pagination) from the Essex Nat. xii., April 1902.]. Svo. Stratford, 1902.

Butler (Arthur Gardiner). Lepidoptera Rhopalocera of Christmas Island. See British Museum—Monogr. of Christmas Island.

Calcutta.

Indian Museum.

Canada.

Geological Survey.

Geological Map of Dominion of Canada. (Western Sheet, No. 783.) Scale: 50 miles = 1 inch. 1902.

Canada (continued.)
Geological Survey (continued).
Contributions to Canadian Palaeontology.
Vol. III. Part 2. 4to. Ottawa, 1902.
On Vertebrata of the Mid-Cretaceous of the North-West Territory.
By Henry Fairfield Osborn and Lawrence M. Lambe. 1902.
1. Distinctive Characters of the Mid-Cretaceous Fauna. By Henry
Fairfield Osborn. 1902.
2. New Genera and Species from the Belly River Series (Mid-
Cretaceous). By Lawrence M. Lambe. 1902.
Cardiff.
Cardiff Naturalists' Society.
The Birds of Glamorgan. Compiled by a Committee of the
Cardiff Naturalists' Society. Pp. xxv, 163; plates 5.
4to. Cardiff, 1900.
Chesnut (Victor King). Plants used by the Indians of Mendocino
County, California. (U.S. Dep. Agric., Contrib. from U.S.
Chicago.
Chicago Academy of Sciences.
Bulletin of the Natural History Survey. (In Progress.)
No. III. Part I. Baker (Frank Collins). The Mollusca of the
Chicago Area. The Pelecypoda. 1898.
No. IV. Part I. Weller (Stuart). The Palaeontology of the
Niagaran Limestone in the Chicago Area. The
Crinoidea. 1900.
Chodat (Robert). Plantae Hassleriæae sunt enumeration des
plantes recoltees au Paraguay par le Dr. Émile Hassler, d'Aarau
(Suisse) de 1885-1895 et de 1898-1900. Partie I. (Bull.
l'Herb. Boissier, vi. Append. i., 2 ser. i., ii.)
Chun (Carl). Aus den Tiefen des Weltmeeres: Schilderungen
von der Deutschen Tiefsee-Expedition. Zweite umgearbeitete
und stark vermehrte Auflage. Mit 6 Chromolithographien, 8
Heliogravüren, 32 als Tafeln gedruckten Vollbildern, 3 Karten
und 482 Abbildungen im Text. 4to. Jena, 1903.
J. C. Galton.
Pp. 9. (Centralbl. f. d. ges. Forstwesen 1902.)
Clayton (John). The Cowthorpe Oak. Pp. 22 and 32 photo-
graphs. 4to. Bradford, 1899. Author.
Agent-General for New South Wales.
Coimbra.
Sociedade Broteriana.
Prof. J. A. Henriques.

Crossland (Charles). The Fungus-Flora of Yorkshire. See Massee (George).

Dalla Torre (Karl Wilhelm von) and Harms (Hermann). Genera Siphonogamarum ad Systema Euglerianum Conspecta. Fasciculi 1–5. 4to. Lipsia, 1899–1902.

Echinidea. By Theodor Mortensen. 1903.

Davenport (Charles Benedict). Experimental Morphology.

Part I. Effect of Chemical and Physical Agents upon Protoplasm. 1897. (Pp. i–xiv, 1–280; figs. 1–74.)

II. Effect of Chemical and Physical Agents upon Growth. 1899. (Pp. xv–xviii, 231–509; figs. 75–140.)

— On Bigbury Camp and the Pilgrims’ Way. See Manchester—Owens College.

Durham (H. E.). Report of the Yellow Fever Expedition to Pará in September, 1901, of the Liverpool School of Tropical Medicine and Medical Parasitology. Pp. 79; plate 1. (Liverpool School of Tropical Medicine, Mem. vii.) 4to. Liverpool, 1902.

Durne (Paul van). Quelques Notes sur les Embryons de Strongyloides intestinalis et leur pénétration par la Peau. Pp. 4; plate 1. (Liverpool School of Tropical Medicine, vol. iv. pt. 2.) 4to. Liverpool, 1902.

Frankfurt-a.-Main.

Senckenbergische naturforschende Gesellschaft.

The Indian Wax Scale as an Orchard Pest and its Control (Ceroplastes ceriferus, Anderson). Pp. 4; plate 1. (Agric. Gazette N.S.W. xiii.) 8vo. Sydney, 1902.

Graebner (Paul). Synopsis der Mitteleuropaischen Flora. See Ascherson (Paul).

Hamburg.

Harms (Hermann). Genera Siphonogamarum etc. Svo. Dalla Torre (Karl Wilhelm von).

Hassler (Émile). Plantae Hasslerianae, soit Enumération des Plantes recoltées au Paraguay par le Dr. Émile Hassler, d'Aarau (Suisse) et déterminées par le Prof. Dr. R. Chodat. (Bull. L'Herb. Boissier, vi. Append i. 2nd ser. i. ii.) Svo. Genève, 1897-1902.

Hellwald (Friedrich von). Der Vorgeschichtliche Mensch. See Baer (Wilhelm). J. C. Galton.

Héronard (Edgard). Holothuries (Princesse-Alice). See Albert.

—— The Use of Museums in Teaching. See Manchester—Owens College.

—— Notes on the Type Specimen of Loligo ebalant, Ball. See Manchester—Owens College.

Hunter (W. Perceval). The Natural History of the Quadrupeds of Paraguay and the River la Plata. Sée Azara (Don Felix de).

Icones Florae Japonicae. Compiled by the College of Science, Imperial University of Tokyō. Vol. I. Parts 1, 2. fol. Tokyō, Japan, 1900–1902.

India.

Botanical Survey.

Johow (Friedrich). Estudios sobre la Flora de las Islas de Juan Fernandez. Con una introduccion sobre las condiciones geográficas i geológicas del Archipílago por el Roberto Pohlmann. Pp. 287; figs. 8; plates 18, & maps 2. Edicion Hecha a Espensas del Gobierno. 4to. Santiago de Chile, 1896. Elkan N. Adler.

Laurent (Émile). Plantæ Laurentianæ, &c. See Wildeman (Émile de).

Leighton (Gerald). See ‘Field’ (The) : Naturalists’ Quarterly.

B. Daydon Jackson.

Liverpool.

Biological Station of Port Erin (Isle of Man).

Liverpool Marine Biology Committee.

Liverpool School of Tropical Medicine.
Memoir. VII. 4to. Liverpool, 1902.

Nervous System of Invertebrata (exclusive of Sense-Organ) and of the Brain and Spinal Cord, with their membranes and blood-vessels, of the Vertebrata. (1902.)

London.

Chemical Society.

Royal College of Surgeons of England.
II. Nervous System of Invertebrata (exclusive of Sense-Organ) and of the Brain and Spinal Cord, with their membranes and blood-vessels, of the Vertebrata. (1902.)

[Contains an Appendix with a List of Mammals, Birds, Insects, Reptiles, Fishes, Shells, and Annelids.] J. C. Galton.

See Nicholson (Henry Alleyn).

Maas (Otto). Die Scyphomedusen der Siboga-Expedition. See Siboga-Expedition, Monogr. xi.

Montpellier.

Académie des Sciences et Lettres.
Catalogue de la Bibliothèque etc., par Émile Bonnet. Partie I→ Svo. Montpellier, 1901→

Moser (Fanny). Die Ctenophoren der Siboga-Expedition. See Siboga-Expedition, Monogr. xii.

Munich.

Königlich-bayerische Akademie der Wissenschaften.

Nantes.

Société des Sciences Naturelles de l'Ouest de la France.

Naples.

Zoologische Station zu Neapel.

Vol. I. Pp. xvi, 511; figs. 381.

II. Pp. ix, 531; figs. 381–722.

II. Pp. xi, 860-1024; figs. 813-1419.

Oliver (Daniel). Flora of Tropical Africa. Vols. I.—III.

Pöhlmann (Robert). Estudios sobre la Flora de las Islas de Juan Fernandez. See Johow (Friedrich).

Schulze (Franz Eilhard). An Account of the Indian Triaxonia collected by the Royal Indian Marine Survey Ship Investigator. See Calcutta: Indian Museum

Scott (Andrew). Decapod and Sessile-eyed Crustaceans from Abd-el-Kuri. See Walker (Alfred O.).

Smith (Henry G.). A Research on the Eucalypts, especially in regard to their Essential Oils. See Baker (Richard Thomas).

Smith (Miss M.). Flora Simlensis. See Collett (the late Sir Henry).

Sowerby (James). The British Miscellany; or coloured figures of new, rare, or little-known animal subjects; many not before ascertained to be inhabitants of the British Isles. 2 vols. in 1. [Published in 12 numbers.] Svo. London, 1804-6. J. C. Galton.

—- Lepidoptera, Rhopaloceres and Heteroceres, indigenous and exotic. Supplement No. 3. 4to. Reading, Pa., 1900.

Stuttgart. Verein für Vaterländische Naturkunde in Württemberg.

Sydney.

Technological Museum, New South Wales.

Education Series, No. 13. 4to. Sydney, 1902.

Tokio.

College of Science, Imperial University of Japan.

Tydeman (G. F.). Description of the Ship 'Siboga' and Appliances used for Scientific Exploration. See Siboga-Expeditie.

Tyler (Edward Burnett). See Rolleston (George). Scientific Papers.

United States Department of Agriculture (cont.).

Division of Botany.

Bureau of Plant Industry.

United States Department of Agriculture (cont.).
Office of Experiment Stations.
Secretary of Agriculture.

United States Geological Survey (cont.).

Visger, Mrs. See Owen (Jean A.).

West (George Stephen). A Contribution to the Freshwater Algae of the North of Ireland. See West (William).

B. Daydon Jackson.

Zürich. Botanischer Garten und das botanische Museum der Universität, Zürich.

Die morphologisch-biologische Anlage und das System des botanischen Gartens in Zürich, von Dr. Hans Schinz. 8vo. Zürich, 1899.

Der botanische Garten und das botanische Museum der Universität, Zürich, im Jahre 1901, 1902. Von Dr. Hans Schinz. 8vo. Zürich, 1902–1903.
DONATION IN AID OF PUBLICATIONS.

1903. £ s. d.

LEGACY.

1903. £ s. d.
April 30. SIR PRIOR GOLDSMITH. Legacy from the late Dr. R. C. A. Prior 100 0 0
INDEX TO THE PROCEEDINGS.

SESSION 1902–1903.

Note.—The following are not indexed:—The name of the Chairman at each meeting; speakers whose remarks are not reported; and passing allusions.

Accounts, 13;—presented (Stebbing), 12.
Additions to Library, 50–78.
Address, President’s, 16–25.
Echymanthus, seeds shown (Wright), 41.
Acock, A. W., admitted, 2; elected, 1.
Alkaloid from Gelsemum, 39.
algin, Eev. T. V., elected, 2.
Alternate leaves from opposite (Groom), 40;—abstract, 48.
Amnophila hirsuta, provision of Spiders in its nest (Stebbing), 8.
Amphipoda, new type (Hansen), 11;—of ‘Southern Cross’ Antarctic Expedition (Walker), 3.
Anatomy of leaves of British Grasses (Lewton-Brain), 41.
—of Pig-footed Bandicoot (Charopus castanotis) (Parsons), 9.
Antarctic Expedition, Amphipoda (Walker), 3.
Ammopus breachiatus (Hansen), 3.
Arber, E. A. N., elected, 39; morphology of fruits and flowers of Alysteum, 3.
Asparagus, fasciated stem shown (Middleton), 2.
Associate, deceased, 14.
Australasian Association, Meeting at Dunedin (Hocken), 39.
Australian Marsupialia, evolution (Bensley), 12.
Automatic movements in Desmodium gyrans (Bose), 7.
Bain, J., deceased, 14; obituary, 26.
Bamboo-joint with lining of Polyporus anthelminticus, 40.
Bandicoot, Pig-footed, its anatomy (Parsons), 9.
Bannerman, W. B., resigned, 14.
Bartlett, A. W., elected, 40.
Barton, E. S. (Mrs. Gepp), Marine Algae from Maldive and Laccadive Islands, 10.
Bastian, H. C., Vaucheria resting-spores, 11.
Bathyonomus giganteus (Hansen), 3.
Bensley, B. A., evolution and relationships of Australian Marsupialia, 12.
Bipolarity (Walker), 3.
Boodle, L. A., stelar structure of Schizaea and other ferns, 2;—abstract, 43.
Bose, J. C., electric pulsation with automatic movements in Desmodium gyrans, 7.
Bostock, E., deceased, 12.
Bourne, G. C., new and rare Corals from Funafuti, 3.
Bowles, E. A., admitted, 1.
Brain, see Lewton-Brain.
Brandis, Sir D., Gelsemium shown, 39.
British Composite, drawings shown (Williams), 39;—Grasses, leaf-anatomy (Lewton-Brain), 41;—larvae, drawings shown (Standish), 3.
Bull, W., deceased, 12; obituary, 27.
Bullen, Rev. R. A., elected Councillor, 15.
Baridge, F. W., resigned, 14.
Burma, bamboo and Gelsemium from, 39.
Calcutta, Indian Phalangidae in Museum of (With), 3.
Cardamine chenopodifolia, its amphicarpic fruit (Wright), 6.
Carex Tolumiei (Clarke), 3.
Carnivorous slug shown (Saunders), 11.
Carruthers, W., Councillor removed, 15.
Carus, Dr. J. V., deceased, 14; obituary, 28.
Cerataphis lotaniae (Embleton), 7.
Ceylon Patanas, their flora (Parkin & Pearson), 9.
Characinidae, their visceral anatomy (Rowntree), 9.
Charter, Supplementary, Special General Meeting, 3;—changes in, 5.
Chile, journey in (Elwes), 1.
Chinese plants, new (Dunn), 41.
Chodat, Fr., Polygala named by, 2.
Chorizus castaunotis, its anatomy (Parsons), 9.
Clarke, C. B., Auditor, 11; Carex Tolumiei, 7; elected Councillor, 15; nominated V.-P., 39; Primula vulgaris, var. Chloé, shown, 41.
Clayton, John, elected, 40; record of Cowthorpe Oak, mentioned, 41; photographs of Cowthorpe Oak, 6, 7.
Colomb, Col. G., branch of thorn infested by larrae, 40.
Composite, drawings shown (Williams), 39.
Compsis infelix, Embl., its anatomy and development (Embleton), 40.
Cooke, Dr. M. C., Linnean Medal awarded to, 25.
Cooper, E. F., resigned, 14.
Copepoda from Faroe Channel (Scott, T.), 3.
— Calanoida from Faroe Channel (Norman), 12.
Corals, new and rare from Funafuti (Bourne), 3.
Corrie, L. G., elected, 2.
Corypha elata, photo shown (Waby), 41.
Cotton, A. D., admitted, 3; elected, 2.
Council elected, 15.
Councillors removed, 15.
Cowslip, presumed hybrid shown (Clarke), 41.
Cowthorpe Oak in 1902, drawing shown (Ogivile), 41.
Crépin, F., deceased, 14; obituary, 28.
Crisp, F., nominated V.-P., 39; recapitulation of steps for proposed Supplementary Charter, 4; re-elected Treasurer, 15.
Cryer, J., discovered locality of Polygala, 2.
Cunningham, R. O., resigned, 14.

INDEX.

Cytatheaeax, anatomy of (Vaughan), 10.

Davidia involucrata, germination of (Hemsley), 41.
Davy, J. B., admitted, 9; elected, 7.
Dennis, W., elected, 11.
Desmodium gyrans, electric pulsation with automatic movement in (Bose), 7.
Digestion in plants (Vines), 2.
Diptera, labial and maxillary palpi in (Wesché), 11.
Donations, 79.
Druce, G. C., Poa laxa and P. stricta, 9.
Druce, H., Councillor removed, 15.
Ductus pneumaticus in Phyaostomi (Rowntree), 9.
Dunedin, Meeting of Australasian Association (Hocken), 39.
Dunn, S. T., new Chinese plants, 41.
Dyer, Sir W. T. Thiselton-, amphicarpic fruits shown for, 6.

Election of Council, 15;—Officers, 15.
Electric pulsation with automatic movements in Desmodium gyrans (Bose), 7.
Elwes, H. J., Natural History Journey in Chile, 1.
Embleton, Miss A. L., Compsis infelix, 40; Cerataphis lotaniae, 7.
Erysipheaece, specialization of parasitism in (Salmon), 7.
Essential oils in economy of plant-life (Henderson), 7;—abstract, 46.
Eustase, G. W., admitted, 40; elected, 39; rudimentary horns in the Horse 41; —abstract, 48.
Evolution of Australian Marsupialia (Bensley), 12.

Farmer, Prof. J. B., elected Councillor, 15; nominated V.-P., 39.
Faroe Channel, Copepods from (Norman), 12; (Scott, T.), 3.
Fasciated stem of Asparagus shown (Middleton), 2.
Fellows deceased, 12; withdrawn, 14.
Ferns, stelar structure of (Boodle), 2.
Fookes, G. J., resigned, 14.
Foreign Members deceased, 14.
Freshwater plankton, Scotland (Wests), 41;—Rhizopods and their Classification (West), 11.
Fritsch, F. E., admitted, 12; elected, 7.
Fruits, fossil (Reid), 9.
Funafuti, new and rare Corals from (Bourne), 3.
INDEX.

Gardiner, J. S., Marine Algae collected from Maldivé and Laccadive Islands, 10.

Gelsemium elegans shown (Brandis), 39; — semprevirae mentioned, 39.

General Secretary, see Jackson, B. D.

Georgetown, Guiana, Corypha clata at (Waby), 41.

Gepp, A., communication by (Mrs. Gepp), 10.

Gepp, Mrs. A., Marine Algae from Maldivé and Laccadive Islands, coll. by J. S. Gardiner, 10.

Gerard, Rev. J., Polygala specimens exhibited, 2; — proliferous Geum rivale from Stonyhurst, shown, 41.

Germination of Davidia (Hemsley), 41.

Geum rivale, proliferous, 2, 6; from Stonyhurst (Gerard), 41; — proliferous specimens shown (Jackson), 6.

Goldney, Sir P., volume of portraits compiled by Dr. Prior, presented, 41.

Grant, F. E., elected, 3.

Grierson, G. A., resigned, 14.

Groom, P., opposite and alternate leaves, 40; — abstract, 48.

Grove, A., admitted, 7; elected, 4.

Goves, H., application of Dr. Prior’s legacy, 12.

Goves, J., suggestion for adjourning alterations, 4.

Goves, J. W., deceased, 12.

Gwynne-Vaughan, D. T., anatomy of Cyatheaceae, 10; — abstract, 47.

Hall, R., elected, 7.

Hansen, H. J., Bathyponus giganteus, 3; — communication by (With), 3; — deep-sea Isopod Anuropus branchiatnus, 3; — Ingolfiiellidae, new type of Amphipoda, 11.

Harting, J. E., removal from Society’s rooms, 12.

Haviland, H. de B., de, admitted, 4.

Heinig, R. L., elected, 2.

Helenium autumnale, virescent flowers (Worsdell), 2.

Hemsley, W. B., Councillor removed, 15; — germination of Davidia, 41.

Henderson, G., abstracts, 45, 46; — effects of leguminous cropping noticed by Virgil, 3; — essential oils and economy of plant-life, 7; — sketch of leaf of Quercus incana and slugs, shown, 11.

Henley, virescent flowers of Helenium from, shown, 2.

Hieracia, drawings shown (Williams), 39.

Hill, T. G., admitted, 12.

Histogenesis, its relation to tissue morphology (Tansley), 2.

Hobkirk, C. C. P., deceased, 12; — obituary, 30.

Hocken, Dr. T. M., on Australasian Association meeting at Dunedin, 39.

Hopson, M. F., admitted, 39; elected, 11.

Horns, rudimentary, in the Horse (Eustace), 41; — abstract, 48.

Horse, rudimentary horns (Eustace), 41; — abstract, 48.

Howes, G. B., communication by (Bensley), 12; — (Embleton), 7; (Smith), 9; — re-elected Secretary, 15.

Hunnybun, E. W., drawings of British Plants shown (Williams), 39.

Hybrid between Primrose and Cowslip (Clarke), 41.

Hyde Park, thorns injured by larvæ, 40.

Hypecoum, seeds of fossil (Reid), 9.

Indian Phalangidae in Calcutta Museum (With), 3.

Ingolfiiellidae (Hansen), 11.

Interchange of Linnean specimens between Sir J. Banks and Sir J. E. Smith (Jackson), 10.

Interglacial plants, drawings by Mrs. Reid, 9.

Isopod, deep-sea, Anuropus branchiatnus (Hansen), 3.

Jackson, B. Daydon, exhibition of proliferous Geum rivale, 6; — General Secretary, 16; — Linnean specimens in Banksian herbarium, 10.

Jennings, A. V., deceased, 12; — obituary, 31.

Jones, K. H., resigned, 14.

Kerr, J. G., elected, 3.

Kowalevsky, A., obituary, 32.

Labial and maxillary palpi in Diptera (Wesche), 11.

Lagenostoma, model of seed shown (Smedley), 2, 6.

Larvae, British, drawings shown (Standish), 3; — destructive to thorns, 40.

Laver, H., resigned, 14.

Leaf-anatomy of British Grasses (Lewton-Brain), 41.

Leake, II. M., elected, 2.
Leaves, change from opposite to alternate arrangement (Groom), 40; — abstract, 41.

Lecanium hemisphericum, the host of Conus (Emlerton), 40.

Legacy (Prior), 12.

Lemurs, Notes on (Smith), 9.

Lewis, E. J., admitted, 2.

Lewton-Brain, L., elected, 10; leaves of British Grasses, 41.

Librarian's Report, 14.

Library, Additions, 50–78.

Linnaeus, C., annotations on Siren (Middleton), 1; letter to P. Miller, 39.

Linnean Medal awarded to Dr. M. C. Cooke, 25.

Long Preston and Settle, Geum rivale from (Gerard), 2.

Lonicera, morphology of fruits and flowers of Xylosteum § of Arber, 3.

Lowe, Dr. J., resigned, 14.

Mann, H. H., elected, 2.

Maries, C., deceased, 12; obituary, 34.

Marine Algae collected by Mr. J. S. Gardiner at Maldives and Laccadive Islands (Gregg), 10.

Marumulin, Australian, evolution and relationships of (Bensley), 12.

Masee, G., communication by (Wesché), 11; fungus in bamboo, identified by, 40.

Masters, Dr. M. T., vote of thanks for Address, 25.

Maxillary Palpi in Diptera (Wesché), 11.

McClure, Rev. E., resigned, 14.

McCorquodale, W. J. H., deceased, 12.

McNair, Major J. F. A., resigned, 14.

Medal, Linnean, awarded to Dr. M. C. Cooke, 25.

Middleton, R. M., letter of Linnaeus to Miller, shown, 39; Linnaeus's dissertation on Siren lacertina shown, 1; Scrutineer, 15; showed fasciated stem of Asparagus, 2.

Miller, P., letter from Linnaeus, 39.

Models of seeds shown (Smedley), 2.

Molineux, A., resigned, 14.

Monckton, H. W., Auditor, 11.

Morphology of flowers and fruits of Xylosteum § of Lonicera (Arber); 3; — relation of histogenesis to tissue (Tansley), 2; — abstract, 43.

Muir, J. J., deceased, 12.

Mycelium in bamboo and elder, 40.

New Zealand, meeting of Australasian Association (Hocken), 39.

Norman, Rev. Canon, Copepoda from Faroe Channel, 12.

Notices of deceased Fellows, 26–39.

Oak, Cowthorpe, in 1902 (Ogilvie), 41.

Obituary notices, 26–39.

Officers elected, 15.

Ogilvie, F. D., drawing of the Cowthorpe Oak in 1902, shown, 41.

Oke, A. W., admitted, 3; elected, 2.

Oliver, F. W., Stephanospermum, 6.

Opposite leaves changed to alternate (Groom), 40; — abstract, 48.

Pachytesta, wax model of section, (Smedley), 6.

Palpi, labial and maxillary, in Diptera (Wesché), 11.

Papers, abstracts of, 42–48.

Parasite of Lecanium hemisphericum (Emlerton), 40.

Parasitism, its specialization in Erysipheae (Salmon), 7.

Parkin, J., admitted, 2.

Parsons, F. G., anatomy of Pig-footed Bandicoot (Choropus castanotis), 9.

Patanas, Ceylon (Parkin & Pearson), 9.

Peloporus spirifer, provision of Spiders in its nest (Stebbing), 8, 9.

Physostomi, Ductus pneumaticus in (Rowntree), 9.

Pig-footed Bandicoot, anatomy of (Parsons), 9.

Finches, J., drawings sent for exhibition, 3.

Plankton, Scottish Freshwater (Wests), 41.

Plant-life, essential oils in the economy of (Henderson), 7.

Plants, digestion in (Vines), 2.

Playfair, D. T., resigned, 14.

Pod laxa (Druce), 9.

— stricta (Druce), 9.

Polygala amarella, specimen collected by Mr. Rotheray, shown (Gerard), 2.

Polyopus anthelminticus, Berk., in bamboo, 40.

Pompilus providing Spiders for its young (Stebbing), 8.

Portraits presented by Sir P. Goldney, 41.

Prelacrical plants, drawings by Mrs. Reid, 9.
INDEX.

President, abstract of paper, 42; re-elected, 15.

Presidential Address, 16-25.

Primrose, new variety or hybrid shown (Clarke), 41.

Primula vulgaris, var. Chloë, shown (Clarke), 41.

Prior, Dr. R. C. A., deceased, 12; legacy, 12; obituary, 35; volume of portraits compiled by, presented, 40.

Quercus incana, sketch of leaf of, (Henderson), 11.

Rabbits, W. L., resigned, 14.

Refertilization of soil (Virgil), 3.

Reid, C., drawings of Preglacial and Interglacial plants by Mrs. Reid, 9.

Relation of histogenesis to tissue morphology (Tansley), 2.

Relationships of Marsupials (Bensley), 12.

Report of Librarian, 14.

Resting-spores of Vaucheria (Bastian), 11.

Rhizopods, Freshwater, their classification (West), 11.

Ridewood, Dr. W. G., elected Councillor, 15.

Rotheray, L., specimen of Polixyla collected by, and of Geum rivale, 2.

Rowntree, W. S., Ductus pneumaticus in Physostomi, 9; Visceral Anatomy of Characimidae, 9.

Salmon, E. S., specialization of parasitism in Erysiplaeaceae, 7.

Sambucus nigra, inyceloid found in its pith, 40.

Saunders, G. S., Auditor, 11; living carnivorous slugs (Testacella halitidea) shown, 11.

Schizaea and other Ferns, their stelar structure (Boodle), 2.

Scott, A., elected Associate, 4.

Scott, D. H., communication by (Gwynne-Vaughan), 10; re-elected Secretary, 15.

Scott, T., Copepoda from Faroe Channel, 3.

Scottish Freshwater plankton (West), 41.

Secretaries, re-elected, 15.

Seeds, drawings of British fossil (Reid), 9; models shown (Smedley), 2; of Aschymanthus shown (Wright), 41.

Seward, A. C., communication by (Arber), 3; elected Councillor, 15.

Sharp, D., communication by (Embleton), 40.

Shelley, Sir C., deceased, 12.

Siren lacertina, Linnaeus's dissertation, shown, 1.

Sladen, Mrs., donor of portrait of her late husband, 41.

Sladen, W. P., portrait presented by widow, 41.

Slug, carnivorous, shown (Saunders), 11.

Smales, Mr., Gelsemium collected by, 39.

Smedley, H. E. II., models of seeds shown, 2, 6.

Smith, G. E., notes on Lemurs, 9.

Smith, G. W., elected, 7.

Soil, effect of leguminous crops (Henderson), 3.

Southworth, W., admitted, 4; elected, 1.

Sparrow stated to destroy Zeuzera Esculti, 40.

Special General Meeting for Supplementary Charter, 3.

Specialization of parasitism in Erysiplaeaceae (Salmon), 7.

Standish, J., drawings of British larvae shown, 3.

Stebbing, Rev. T. R. R., Auditor, 11; Councillor removed, 15; moved authorization for Council to obtain Supplementary Charter, 4; presentation of portrait of the late W. P. Sladen, 41; presented Treasurer’s accounts, 12; Spiders and Wasps from Singapore (Saunders), 7.

Stelar structure of Schizaea and other ferns (Boodle), 2.

Stephanospernum (Oliver), 6.

— akonitoides, model of seed shown (Smedley), 2, 6.

Stonyhurst, prolificous Geum rivale from (Gerard), 41.

Structure, stelar, of Schizaea and other ferns (Boodle), 2.

Supplementary Charter, changes in, 5; — Special General Meeting, 3.

Tansley, A. G., Councillor removed, 15; relation of histogenesis to tissue morphology, 2; — abstract, 43.

Testacella halitidea shown (Saunders), 11.

Tharaundi Forests, Burma, bamboo from, 40.

Thistleton-Dyer, Sir W. T., see Dyer.

Thomas, D., elected, 40.

Thompson, J. S., elected, 11.

Thoms. M.r., thorns injured by larvae, 40.

Tissue morphology, relation of Histogenesis to (Tansley), 7; — abstract, 43.
INDEX.

Topp, C., resigned, 14.
Torrey, wax model of section, shown, (Smedley), 6.
Treasurer, re-elected (Crisp), 15; presentation to Society, 1; virecent flowers of Helcnium, 2.
Treasurer's Accounts, 13; presented, 12.
Trifolium polymorlphum, amphiarcpic fruit (Wright), 6.

Vaucheria resting-spores (Bastian), 11.
Vaughan, see Gwynne-Vaughan.
Vice-Presidents nominated, 39.
Victa amphicarpa, its amphicarcpic fruit (Wright), 6.
Vines, Prof. S. H., digestion in plants, 2; re-elected President, 15.
Virecent flowers of Helcnium shown, 2.
Virgil, effects of leguminous crops on soil, noticed by (Henderson), 3.
Visceral anatomy of Characinidae (Rowntree), 9.

Waby, J., photo of Corypha clata shown, 41.
Wakefield, C. M., deceased, 12.
Walker, A. O., Amphipoda of 'Southern Cross' Antarctic Expedition, and Bipolarity, 3; nominated V.-P., 39.
Wells, H. T., portrait of W. P. Sladen painted by, presented, 41.
Wesche, W., labial and maxillary palpi in Diptera, 11.

West, G. S., Freshwater Rhizopods and their Classification, 11.
—, see West, W., & G. S. West.
West, W., presentation of Mr. Clayton's photographs, 7.
West, W., & G. S. West, Scottish Freshwater plankton, 41.
Williams, F. N., drawings of British plants shown, 39; thanks for President's Address, 25.
Wiltshire, Rev. T., deceased, 12; obituary, 37.
With, C., Indian Phalangidae in Museum at Calcutta, 3.
Wood Leopard Moth, injurious to thorns, 40.
Worsdell, W. C., virecent flowers of Helcnium, 2.
Wright, C. H., amphicarcpic fruits of Cardamine chenopodifolia, Trifolium polymorlphum, and Viclca amphicarpa, 6; new Chinese plants, 41; seeds of Eckynanthus, 41.

Xylosteum section of Lonicera, morphology of its fruits and flowers (Arber), 3.

Zamia, wax model of section (Smedley), 6.
Zenzura Esculi, larva destructive to thorns, 40.
PRINTED BY TAYLOR AND FRANCIS,

RED LION COURT, FLEET STREET.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Publications issued</td>
<td>iv</td>
</tr>
<tr>
<td>Proceedings of the 116th Session</td>
<td>1</td>
</tr>
<tr>
<td>President’s Address</td>
<td>17</td>
</tr>
<tr>
<td>Obituaries</td>
<td>31</td>
</tr>
<tr>
<td>Abstracts of Papers and Exhibitions</td>
<td>41</td>
</tr>
<tr>
<td>Additions to the Library</td>
<td>43</td>
</tr>
<tr>
<td>Donations</td>
<td>68</td>
</tr>
<tr>
<td>Index</td>
<td>69</td>
</tr>
</tbody>
</table>
Publications of the Society issued during the period, 1st July, 1903, to 31st July, 1904:—

<table>
<thead>
<tr>
<th>Journal (Botany), No.</th>
<th>Date</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>247, 31st Oct., 1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>248, 5th May, 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>252, 31st Oct., 1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>253, 31st March, 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>254, 25th July, 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Zoology), No.</td>
<td>Date</td>
<td>Year</td>
</tr>
<tr>
<td>188, 31st Oct., 1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>189, 31st March, 1904</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Transactions (2nd Ser. Botany), Vol. VI. Part</th>
<th>Date</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>vii., Feb. 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>viii., Mar. 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ix., June 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>viii., Dec. 1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2nd Ser. Zoology), Vol. VIII. Part</td>
<td>Date</td>
<td>Year</td>
</tr>
<tr>
<td>xiii., Dec. 1903</td>
<td></td>
<td></td>
</tr>
<tr>
<td>iv., Feb. 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>v., June 1904</td>
<td></td>
<td></td>
</tr>
<tr>
<td>vi., July 1904</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Proceedings, 115th Session, 1902–1903, October 1903 |

| List of [Fellows, Associates, and Foreign Members], 1903–1904 |
November 5th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Thomas Archibald Sprague was elected, and Mr. William Dennis and Mr. Bertram Henry Bentley were admitted Fellows of the Society.

Dr. W. G. Eidewood exhibited the frontal bones of a Horse showing rudimentary horns, for the loan of which he was indebted to Mr. Arthur Broad, a veterinary surgeon of Shepherd's Bush. There was no record as to the breed, sex, or age of the horse. The bony protuberances were about 3 inches apart, and were set upon the curved ridges that constituted the anterior margins of the areas of origin of the temporal muscles. In the natural sloping position of the head in the living horse they would have been vertically above the orbits. The bases were broad and spreading, and the left boss was larger than the right; it stood about half an inch above the general surface of the frontal bone, and its flattened extremity was oval and measured \(\frac{3}{4} \) inch by \(\frac{3}{8} \) inch. There was a general but slight tendency to exostosis over the right temporal area. Dr. Eidewood pointed out that the exceptional cases of horny bosses occurring in horses could hardly be regarded as instances of reversion, as had been done at the previous meeting.
of the Society by Dr. Eastace; for the palaeontological record of
the evolution of the horse is remarkably complete, and no indi-
cations of horns are to be found in the extinct congener of the
modern equines. (Mr. Broad has since presented the specimen
to the Natural History Museum.)

Professor Weiss exhibited some preparations and photographs
of a mycorhiza or mycorhizome from the Coal-measures. The
preparations were in part from the Cash Collection at the Owens
College, Manchester, and in part from Dr. Scott's private col-
lection. They showed the existence in a small root-like organ of
fungal filaments presenting all the appearances of those found in
the roots of many orchids and in the rhizome of Psilotum. In the
outer layers of the cortex the hyphae run along the inside of the
cell-walls and form smaller and larger vesicles in some of the cells,
comparable with those found in the mycorhiza of living plants.
In the deeper layers of the cortex the contents of the cells are
collected into a central dark mass connected with the cell-walls by
delicate strands some of which are clearly fungal hyphae. These
masses very closely resemble those described by Shibata in the
mycorhiza of Orchids. Small bodies similar to the "sporangioles"
described by Janse are also met with occasionally. From the
occurrence of these various stages Professor Weiss was inclined
to infer that a symbiotic relationship existed between the fungus
and the host-plant similar to that of an existing mycorhiza.
With regard to the plant in which the fungus occurred, he was
inclined to think that it might have been epiphytic, a view which
would be supported by the absence of large air-spaces such as are
found in the young roots of Calamites and in the rootlets of
Stigmaaria.

A discussion followed in which Dr. Percy Groom, Dr. D. H.
Scott, Mr. W. C. Worsdell, and Prof. F. W. Oliver took part,
Prof. Weiss briefly replying.

Mr. B. H. Bentley exhibited a large series of lantern-slides,
designed for teaching purposes, which he had taken, illustrating
certain types of floral pollination, and bees and other insects in
actual operation.

The following papers were read:—

1. "On the Structure of the Leaves of the Bracken (Pteris
aquilina) in relation to Environment." By Leonard A. Boodle,
F.L.S.

2. "On the Life-history of a New Monophlebus from India, with
a Note on that of a Vedalia predaceous upon it; with remarks on
the Monophlebinæ of the Indian Region." By E. P. Stebbing,
F.L.S.
November 19th, 1903.

Prof. SYDNEY H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Thomas Archibald Sprague was admitted a Fellow of the Society.

The Rev. JOHN GERARD, S.J., F.L.S., exhibited a fasciated rose, sent by the Rev. J. Dobson, of St. Ignatius's College, St. Julian, Malta, with this note:—“A freak of a white climbing rose, in which eight or nine blossoms with their stalks have grown together. It was given me by the Director of Education from a rose-tree in his garden. He says there is nothing in the position of the bush to account for the peculiarity.”

Dr. M. T. MASTERS observed that we are in complete ignorance of the causes which produce these peculiar teratologic cases.

The Rev. R. ASHINGTON BULLEN, F.L.S., brought for exhibition an albino mole, from a farm near Bagshot: it was wholly of a light fawn colour, and no similar specimen had been seen there for at least twenty years, though many moles have been trapped on the same farm.

Mr. A. D. MICHAEL stated that he had been in the habit of investigating moles' nests for his researches on mites, but nothing of this kind had ever come under his notice.

The following papers were read:

2. "Contributions to the Embryology of the Amentiferae.—Part II. Carpinus Betulus." By Miss Margaret Benson, D.Sc., and Miss Elizabeth Sanday, B.Sc. (Communicated by Prof. F. Wall Oliver.)

December 3rd, 1903.

Prof. J. BRETLAND FARMER, F.R.S., Vice-President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. William Norwood Cheeseman, Mr. William Clitheroe, Mr. Ernest Jacob Collins, Mr. Frederick Hamilton Davey, Mr. William Foggitt, Mr. Montague Hill, Mr. John Edmund Shoree Moore, and Mr. Robert Walter Campbell Shelford were elected Fellows of the Society.

The Vice-President in the Chair then declared the Meeting to
be a Special Meeting, in accordance with the announcement sent to every Fellow in the United Kingdom, for electing a Councillor, and Secretary for Zoology, in the room of Professor George Bond Howes, resigned, and stated that the Ballot would remain open till 8.30 p.m. for the Councillor, and till 8.45 p.m. for the Secretary.

The Ballot for the Councillor having been closed, the Vice-President in the Chair appointed Messrs. A. G. Tansley, H. W. Monckton, and V. H. Blackman, Scrutineers; and the Votes having been counted and reported to the Vice-President in the Chair, he declared that the Rev. Thomas Roscoe Rede Stebbing had been elected Councillor by a large Majority.

The Ballot for the Secretary having been closed, the Vice-President in the Chair appointed the same Scrutineers, and the Votes having been counted and reported to the Vice-President in the Chair, he declared that the Rev. T. R. R. Stebbing had been unanimously elected Secretary for Zoology.

The following papers were read:—

2. "On Littoral Polychæta from the Cape of Good Hope." By Dr. Arthur Willey, F.R.S. (Communicated by Dr. W. G. Ride-wood, F.L.S.)
3. "Notes on Myriactis Areschougii and Coiodesme californica." By Miss Mary Rathbone. (Communicated by V. H. Blackman, F.L.S.)

December 17th, 1903.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Frank Cavers was elected, and Mr. William Clitheroe, Mr. Ernest Jacob Collins, and Mr. Norman Maclaren were admitted Fellows of the Society.

The General Secretary exhibited a copy of a 'Lexicon generum phanerogamarum,' by Tom von Post, revised and enlarged by Otto Kuntze, which he had received from the author a few days before. He gave a succinct account of the labours of Dr. Kuntze (from the time he worked up his collections at Kew), in the matter of nomenclature based solely upon priority, and set forth in this volume by his colleague at Upsala. The introductory matter was entirely due to Dr. Kuntze, who was also responsible for the French and English versions; besides the preface, were included a 'Codex brevis maturus,' in which Dr. Kuntze postulated his requirements as to names, spelling, and signs, and his ideas as to the regulations for a Botanical Congress, with the class of persons
permitted to record their votes, but, naturally, without any power to penalise those who decline to accept the suggested trammels.

The Rev. T. R. R. Stebbing, F.R.S., Sec.L.S., exhibited:—(1) a House-spider (*Tegenaria* sp.) with its cylindrical dwelling in the coiled feather of an Indian fan. The fan which the spider adapted to its purposes had been hanging up in a drawing-room at Jerusalem. The spider, forwarded by Miss Fitzjohn to Miss Grace Stebbing, reached England alive. And (2) a solid gnar or excrescence upon the root of *Cupressus macrocarpa*, sent for exhibition by Mr. F. G. Smart, F.L.S., of Tunbridge Wells; it was eleven inches in circumference.

Prof. Percival remarked that such growths were commonly due to the attack of a Uredine fungus, which resulted in an hypertrophy of the tissues; it was not infrequent in *Pinus*, but more usual on the stem than the root.

A lantern demonstration was given by Prof. J. Bretland Farmer, F.R.S., F.Z.S., entitled "A brief Account of New Researches in Cancer," in which he alluded to current theories of cancerous growth, and then proceeded to state his own discovery that the cytological changes in malignant growth resemble those exhibited by sporogenous or gametogenous tissues in plants and animals, in the occurrence of the form of nuclear division known as heterotype, as distinguished from the more usual homotype division.

An animated discussion followed, the following speakers taking part:—Mr. J. T. Cunningham (visitor), Mr. J. E. S. Moore, Prof. J. B. Farmer, Prof. F. O. Bower (who deprecated the use of certain new terms), Dr. D. H. Scott, Sec.L.S., Rev. T. R. R. Stebbing, Sec.L.S., Mr. Charles E. Walker (visitor), and was summed up by the President.

The following paper was read:—

"On the Docoglossa: an evolutionary study." By Mr. H. J. Fleure, B.Sc. (Communicated by Prof. W. A. Herdman, F.L.S.)

January 21st, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Leslie Beeching Hall and Mr. Charles Edward Walker were elected, and Mr. Edward Percy Stebbing was admitted a Fellow of the Society.

Dr. Eric Drabble, F.L.S., exhibited a lantern-slide showing diagrams of bicarpellary fruits of the French Bean. The specimens
of *Phaseolus vulgaris*, Savi, were obtained from a garden on the Middle Coal-measures of North Derbyshire. In the simplest case there is present on the posterior aspect of the normal carpel a second smaller carpel with reversed orientation and without seeds. In other cases the second carpel attains to at least one-half the size of the normal anterior one, and is fused with the latter proximally in such a manner as to give rise to a unilocular fruit with parietal placentation, the carpels being free from one another in their distal portion. In other cases the two carpels are of approximately the same size and both bear seeds. They are completely fused below to form a unilocular ovary, while above they divericate from one another.

It was pointed out that although the Leguminosae are typically monocarpellary, certain members of the order are bi- or even polycarpellary; but in these cases the polycarpellary fruit is of an apocarpous nature. It would appear, therefore, that the specimens described in some sense revert to ancestral conditions in so far as their bicarpellary nature is concerned, but that their syncarpous nature is anomalous. Comparison with related orders, *e.g.* the Connaraceae, confirms this opinion.

The Rev. R. Ashington Bullen, F.L.S., exhibited a finely preserved female specimen of the Northern Stone-Crab, *Liithodes maia* (Linn.), from Aberdeen, and called attention to the various organisms securely settled upon its carapace. A discussion followed on the characters, systematic position, and distribution of this anomalous macruran, in which Professor Poulton, F.R.S., Mr. A. O. Walker, V.P.L.S., and the Zoological Secretary took part.

The following papers were read:—

February 4th, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Leslie Beeching Hall was admitted a Fellow of the Society.

Mr. Charles Edgar Salmon, F.L.S., exhibited two specimens of *Epilobium collinum*, C. C. Gmel., from Scotland, with a series of *E. montanum* and *E. lanceolatum* for comparison, and read the following note:—
The two specimens of *E. collinum* upon the table were found in the Herbarium of the Holmesdale Natural History Club, Reigate. They were presented to the Club, with many other plants, by Dr. J. A. Power, and the specimens are labelled "Scotland," but are undated; they were probably collected by Dr. Power about 60 years ago. *E. collinum* occupies an intermediate position between *E. montanum* and *E. lanceolatum*, and occurs in rocky places, ascending to some height, in many parts of Europe. By some botanists it is considered a variety of *E. montanum*, but Dr. Haussknecht, the monographer of the genus, considers it a good species. The only British species with which it may be compared are *montanum* and *lanceolatum*; from the former it differs by its stalked, mostly alternate, leaves, cuneate at the base, and pale pink flowers; from *lanceolatum* (to which it seems nearest allied) by its broader, ovate leaves and other characters.

E. collinum, as I saw it growing in the Pyrenees last summer, seems to have a distinct habit of its own, and can be easily recognized alive from both the above two species.

Rev. E. S. Marshall has seen these Scotch examples, and believes them to be correctly named.

A discussion took place, in which the General Secretary, Mr. James Groves, Mr. R. M. Middleton, and Prof. J. B. Farmer took part, and Mr. C. E. Salmon replied.

The following papers were read:

1. "Researches into the Physiology of the Yeast-Plant, *Saccharomyces Cerevisiae*." By the President.

February 18th, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. Samuel Alexander Stewart was elected an Associate of the Society.

Mr. L. T. Badams exhibited a folio guard-book containing a large collection of West Australian flowers and vegetable products, grouped for artistic effect, which had been prepared by a friend in that colony.

The following papers were read:

1. "Mendel's Laws and their application to Wheat-Hybrids." By Mr. R. H. Biffen. (Communicated by the President.)

2. "Heredity and Variation as seen in *Primula sinensis*." By Mr. W. Bateson, F.R.S. (Communicated by the President.)
March 3rd, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. George Herbert Fowler, Rev. Henry Thomas Spufford, and Mr. James Hornell were elected Fellows of the Society.

Mr. L. A. Boodle, F.L.S., exhibited photographic lantern-slides demonstrating the formation of secondary wood in certain regions of the stem of Psilotum triquetrum. In parts of the rhizome immediately below the aerial stems, and at the base of the aerial stems themselves, tracheides occur, often in considerable numbers, outside the primary wood. These external tracheides are found to be still in course of development, as shown by the imperfect lignification of their walls, at a time when the primary wood has long been completed; in some cases the external elements of the wood further show a distinct radial arrangement. These stems thus exhibit distinct remains of the secondary vascular tissues characteristic of the Palæozoic Sphenophyllales, with which on various grounds there is reason to believe the Psilotaceae to be allied.

A discussion followed, in which Dr. D. H. Scott, Mr. C. B. Clarke, and the President joined.

The following papers were read:

1. "A List of the Carices of Malaya." By Charles Baron Clarke, F.R.S., F.L.S.

March 17th, 1904.

Prof. J. Bretland Farmer, F.R.S., Vice-President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Mr. John Lewis Bonhote was elected a Fellow of the Society.

The Chairman announced that Mr. William Watson had been duly elected an Associate, on the 18th February last, in accordance with Bye-Laws, Chapter V., Section III., by a simple majority of the Fellows voting.
The Treasurer then read the section in question, pointing out that it was therein declared that only the Second, Third, and Fourth Sections of Chapter I. applied to the election of Associates, and the Fifth Section, requiring a two-thirds majority, was expressly excluded.

The Rev. R. Ashington Bullen exhibited (1) the egg-capsule of a *Mantis* found on a twig of wild Olive, while others occurred in immense numbers on blackberry and various shrubs at Brenes, near Carmona, Spain, February 16th, 1904. Mr. W. F. Kirby refers it to *Mantis religiosa*, Linn.; it is figured in Brunner von Wattenwyl's 'Prodromus der Europäischen Orthopteren,' pl. 2. figs. 14 (A, female; B, egg-capsule; C, section of B). This author, however, states that the species which he describes deposit their capsules on stones; so far as we observed, however, none were in that position, but were placed on shrubs and bushes at the edge of a precipice (barranca). The capsules obtained as above are less elongated and more turgid than in the figures cited. Mr. W. L. Distant is of opinion that the capsules vary in shape; the number of eggs contained is about 30.

(2) A photograph of a cat playing with a snake before killing it, and calling to her kittens in a loud and peculiar way to come and share in the sport; it was snapped by Mr. George Bonsor in 1903, in the *patio* of his house in the Necropolis Romana, Carmona.

Mr. A. O. Walker brought a branch of Black Currant from his garden near Maidstone, with the swollen buds indicative of the destructive mite *Eriophyes ribis*. A discussion followed, in which the Chairman, Mr. A. D. Michael, Mr. N. E. Brown, and Mr. E. M. Holmes took part, Mr. Walker replying.

The General Secretary, Mr. B. Daydon Jackson, then gave an exhibition and lantern demonstration of "Botanic Illustration from the 15th to the 20th Centuries," tracing its development from the earliest herbals to the present time, with an account of the various methods employed.

The following paper was read:—

"On Bryozoa from Franz-Josef Land." By Arthur William Waters, F.L.S.

April 7th, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the General Meeting of 17th March having been read, their confirmation was opposed by Mr. George R. M. Murray, on a point of order, that inasmuch as the election of Mr. William Watson as an Associate was not declared at the meeting of the 18th February, it could not be so declared at a
later meeting; this being seconded by Mr. James Groves, led to a prolonged discussion, in which Mr. A. O. Hume, Mr. Henry Groves, Dr. A. Smith Woodward, Rev. T. R. R. Stebbing, Mr. G. S. Boulger, Mr. F. Crisp, Mr. Thomas Christy, Mr. E. M. Holmes, Dr. D. H. Scott, Mr. Gilbert Christy, and Mr. J. Britten, joined. By consent, the voting by show of hands was taken to be for or against confirmation of the Minutes; those in favour of confirmation 14, against 17 (one more being invalid), out of 47 Fellows present. The Minutes were accordingly not signed.

Dr. John Don Fisher Gilchrist, Mr. William Philip James Le Brocq, and Mr. Charles Edward Pearson were elected, and the Rev. Henry Thomas Spufford and Mr. John Lewis Bonhote were admitted Fellows of the Society.

The President, on behalf of Prof. Isaac Bayley Balfour, presented a Gold Medal recently struck in commemoration of his father, Prof. John Hutton Balfour; a special vote of thanks was accorded by acclamation.

Sir Joseph Hooker forwarded for acceptance by the Society a photograph of an etching by Mrs. Dawson Turner, from a drawing by J. S. Cotman, of her husband, who was a Fellow of the Linnean Society for fifty years (from 1797 to 1858). For this gift a special vote of thanks was passed.

Mr. E. P. Stebbing exhibited lantern-slides of the metamorphoses of Clania crameri, a Psychid moth from the Madras Presidency, showing its use of its food-plant, Casuarina equisetifolia, in the making of its protective case.

Mr. F. Enock displayed a series of more than fifty slides of Natural Colour Photography of living insects and flowers by the Sanger-Shepherd three-colour process; the President adding a few remarks on the results.

The following paper was read:—

April 21st, 1904.

Prof. Sydney H. Vines, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed. The President then referred to the fact that the Minutes of the Meeting on March 17 had not been approved at the Meeting on
April 7, and read the statement of facts upon which he had, on his own initiative, submitted to the Right Hon. Sir Edward Fry, P.C., F.R.S., F.L.S., for his opinion, the following questions:—

1. Was the Council correct in interpreting the Bye-Laws, Chap. V. Sect. III., to mean that a simple majority, and not a two-thirds vote, is all that is required for the valid election of an Associate?

2. Assuming that the previous question is so answered as to establish the validity of the election on February 18,—is the validity of that election materially affected by the fact that the election was not declared at that Meeting and does not appear in the Minutes of that Meeting?

3. Was the declaration of the Election made at the Meeting on March 17 a valid declaration; and is its validity impaired by the fact that the Minutes of that Meeting, in which the declaration was included, were not approved at the Meeting on April 7?

To these questions Sir Edward Fry replied at once to the effect:—1. That in his opinion the Council's reading of the Bye-Laws in relation to the election of an Associate is correct, and that clearly a bare majority only is required; 2. That the validity of the election on the 18th February was not materially affected by the fact that the election was not declared at that Meeting nor mentioned in the Minutes, nor is a declaration a vital part of the election under Chap. V.; 3. That as the Charter charges the Council with the direction of the business of the Society, it was competent for that body to act as they did, and for the Chairman with their approval to declare on the 17th March the result of the election on the 18th February, which by an error had not been declared at the proper time, and, under the circumstances, was a proper step to take.

Upon this the President moved that the Minutes of the General Meeting of the 17th March be approved and invited discussion, in which Mr. Henry Groves, Prof. G. S. Boulger, Sir Ernest Clarke, Mr. S. Moore (who moved the previous question, which was not seconded), and the Treasurer took part. On the motion being put by show of hands, of the 64 Fellows present, 43 voted for the motion, and 10 against: the Minutes were accordingly signed. Mr. George Murray having contributed a few remarks, the President moved a vote of thanks to Sir Edward Fry, whose opinion had been of so much assistance in clearing up the legal points involved, which vote was carried by acclamation.

Mr. John Hopkinson then moved, and Mr. R. Morton Middle- ton seconded, a vote of thanks to the President for the care and trouble he had taken in the matter, which was unanimously passed; and the President having briefly returned thanks, the incident closed.
Mr. Philip Furley Fryson and Mr. Robert Selby Hole were elected, and Dr. George Herbert Fowler, Mr. William Philip James Le Brocq, and Mr. Charles Edward Pearson were admitted Fellows of the Society.

The President then read a letter from H.M. Office of Works stating that the Lords Commissioners of H.M. Treasury had authorised the Board to assign to the Society the rooms shortly to be vacated by the Post Office, on condition that the Society bears the cost of alteration necessary to adapt them to its use. The announcement having been unanimously welcomed, the General Secretary briefly referred to the negotiations during the past four years which had now been crowned with success.

Auditors for the annual audit of the Treasurer's accounts were nominated, Mr. C. B. Clarke and the Rev. R. Ashington Bullen on behalf of the Council, and Mr. Herbert Druce and Mr. E. G. Baker on behalf of the Fellows; by show of hands these were duly elected.

Mr. Clement Reid exhibited drawings by Mrs. Reid of Fruits and Seeds of British Preglacial, Interglacial, and Roman Plants: 2nd Series—Calyciflorae.

The most interesting addition to the Interglacial flora is the South-European Cotoneaster Pyracantha, which occurs abundantly on the Sussex coast in deposits which yield also Acer monspessulanum, Najas minor, and N. graminea.

The Preglacial Calyciflorae include Trapa natans; but the rest of the species yet determined are still living in Britain; many, however, need further examination.

The plants from Roman Silchester include the vine, bullace, damson, and coriander.

Mr. R. Morton Middleton exhibited a holograph letter from Linnaeus to Haller, dated Upsala, 12th May, 1747, conveying the intelligence of Haller being elected a Foreign Member of the Royal Academy of Sciences, Stockholm. The President and the General Secretary contributed some brief remarks. (See p. 41.)

Dr. O. Staff, on behalf of Mr. W. B. Hemsley, exhibited some specimens of Primula vulgaris, Huds., which displayed the phenomenon of phyllody of the calyx in an unusual degree.

A paper by Mr. James Cash was postponed to a subsequent meeting.
May 5th, 1904.

Prof. SYDNEY H. VINES, F.R.S., President in the Chair.

The Minutes of the last Meeting were read and confirmed.
Prof. Eugène Louis Bouvier, Prof. Dr. Carl Chun, and Prof. Dr. Hugo de Vries were elected Foreign Members, and Mr. Philip Furley Fyson was admitted a Fellow of the Society.

The following papers were read:

May 24th, 1904.

Anniversary Meeting.

Prof. SYDNEY H. VINES, F.R.S., President in the Chair.

The Minutes of the last Meeting were read and confirmed.

The Treasurer, in presenting the annual statement of Accounts for the financial year ending 30th April, duly audited as on p. 14, compared the various items of receipt and expenditure of this and the previous years. He also laid on the Table the Supplementary Charter, dated 8th April, 1904, the result of the Special General Meeting held on 15th January, 1903.

The Charter having been formally read over, the President moved a special vote of thanks to the Treasurer for the labour expended and his generous gift of the Charter to the Society, which was supported by Mr. W. Carruthers, and carried by acclamation.

The General Secretary read his report of deaths, withdrawals, and elections as follows:

Since the last Anniversary Meeting 15 Fellows had died or their deaths been ascertained:

Mr. William Henry Catlett.
Mr. William Duppa Crotch.
Rev. Thomas Foulkes.
Dr. William Francis.
Mr. John Charles Galton.
Dr. Charles Henry Gatty.
Dr. Edward Hamilton.
Dr. W. Berry Kellock.

| Mr. Philip Brookes Mason. |
| Mr. Lewis Powell. |
| Sir Walter Joseph Sendall. |
| Mr. Isaac Cooke Thompson. |
| Mr. Augustus Thorne. |
| Dr. Charles H. Wade. |
| Mr. Christopher Ward. |
Receipts and Payments of the Linnean Society from May 1st, 1903, to April 30th, 1904.

<table>
<thead>
<tr>
<th>Receipts</th>
<th>£ s. d.</th>
<th>Payments</th>
<th>£ s. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance at Bankers on the 1st May, 1903</td>
<td>298 16 6</td>
<td>Taxes and Insurance</td>
<td>10 1 3</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>180 11 8</td>
<td>Repairs and Furniture</td>
<td>49 7 0</td>
</tr>
<tr>
<td>Admission Fees</td>
<td>168 0 0</td>
<td>Coals and Gas</td>
<td>39 1 9</td>
</tr>
<tr>
<td>Annual Contributions</td>
<td>1416 0 0</td>
<td>Salaries</td>
<td>784 7 6</td>
</tr>
<tr>
<td>Compositions</td>
<td>204 0 0</td>
<td>Library:</td>
<td></td>
</tr>
<tr>
<td>Sales of Publications:</td>
<td></td>
<td>Books</td>
<td>£205 13 8</td>
</tr>
<tr>
<td>Transactions</td>
<td></td>
<td>Binding</td>
<td>86 3 0</td>
</tr>
<tr>
<td>Journals</td>
<td></td>
<td></td>
<td>291 16 8</td>
</tr>
<tr>
<td>Proceedings and Catalogues</td>
<td>244 3 4</td>
<td>Expenses of Publications:</td>
<td></td>
</tr>
<tr>
<td>Miscellaneous Receipts</td>
<td>183 4 5</td>
<td>Printing</td>
<td>£739 7 5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Illustrations</td>
<td>256 13 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Distribution</td>
<td>51 0 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1047 2 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Miscellaneous Printing and Stationery</td>
<td>85 9 11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Petty Expenses (including Tea and Postage)</td>
<td>119 18 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>267 11 6</td>
</tr>
<tr>
<td></td>
<td>2604 15 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Investments on the 30th April, 1904.

<table>
<thead>
<tr>
<th>Investments</th>
<th>£ s. d.</th>
<th>£ s. d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consols, 2\text{\small 3} per cent.</td>
<td>3828 10 7 @ 89\frac{1}{2}</td>
<td>3416 19 2</td>
</tr>
<tr>
<td>Metropolitan Board of Works 3\text{\small 3} per cent. Stock</td>
<td>1079 11 3 @ 104\frac{1}{2}</td>
<td>1128 2 9</td>
</tr>
<tr>
<td>Great Indian Peninsula Railway, Annuity Class B</td>
<td>42 1 5 @ 21\frac{1}{2}</td>
<td>904 16 6</td>
</tr>
<tr>
<td>Forth Bridge Railway 4 per cent. Stock</td>
<td>450 0 0 @ 118\frac{1}{2}</td>
<td>533 5 0</td>
</tr>
<tr>
<td>Consols (Westwood Bequest), 2\text{\small 3} per cent.</td>
<td>249 3 8 @ 89\frac{1}{2}</td>
<td>222 7 11</td>
</tr>
</tbody>
</table>

Frank Crisp, Treasurer.

£6205 5 4

Audited, and found correct.

[SYDNEY H. VINES, THOS. R. R. STEBBING, R. ASHINGTON BULLEN,]
[HERBERT DRUCE, E. G. BAKER, C. B. CLARKE.]

Auditors.

19th May, 1904.
Associate (1).
Mr. William Penney.

Foreign Members (2).
Prof. Dr. Carl Gegenbaur. | Dr. Michael Woronin.

The following 7 Fellows have resigned:
Mr. Charles Renfric Chichester. Mr. Henry Ernest Milner.
Mr. John Morley Dennis. Mr. Lewis Ough.
Mr. James Edmund Harting. Mr. Henry George Stacey.
Mr. F. M. Krause.

Two Fellows have been removed from the list of Fellows by order of the Council.

And 27 Fellows (of whom 24 have qualified), 2 Associates, and 3 Foreign Members have been elected.

The Librarian's report was read as follows:

During the past year 131 Volumes and 135 Pamphlets have been received as Donations from Private Individuals.
From the various Universities, Academies, and Scientific Societies, 291 volumes and 70 detached parts have been received in exchange and otherwise, besides 57 volumes and 41 parts obtained by exchange and as Donations from the Editors and Proprietors of independent Periodicals.
The Council has sanctioned the purchase of 187 volumes and 83 parts of important works.
The total additions to the Library are therefore 666 volumes and 329 separate parts.
The number of Books bound during the year is as follows:
In half-morocco 333 volumes, in half-calf 15 volumes, in full cloth 186 volumes, in vellum 31 volumes, in buckram 21 volumes, in boards or half-cloth 18 volumes. Relabelled (half-morocco and cloth backs) 49 volumes. Total 653 volumes.

The General Secretary having read the Bye-Laws governing the Elections, the President opened the business of the day, and the Fellows present proceeded to Ballot for the Council and Officers. The Ballot for the Council having been closed, the President nominated Mr. W. Carruthers, Rev. Canon Fowler, and Mr. Henry Groves, Scrutineers; and the Votes having been counted and reported to the President, he declared that the Rev. R. A. Bulleen, Prof. J. Reynolds Green, Mr. G. Massee, Colonel C. Swinhoe, and Mr. A. O. Walker had been removed from the Council, and that
Mr. V. H. Blackman, Dr. A. Günther, Prof. W. A. Herdman,
Mr. F. G. Parsons, and Dr. O. Staff had been elected into the
Council.

The Ballot for the Officers having been closed, the President
appointed the same Scrutineers; and the Votes having been counted
and reported to the President, he declared the result as follows:—

President, Prof. W. A. Herdman.

Treasurer, Mr. Frank Crisp.

Secretaries | Dr. D. H. Scott.

The President delivered his Annual Address (see p. 17).

Mr. John Hopkinson moved, and Mr. J. F. Duthie seconded:

That the President be thanked for his excellent address and that
he be requested to allow it to be printed and circulated among the
Fellows, which was carried unanimously.

The President then addressed Dr. A. Günther, and presented
the Linnean Gold Medal to him; which the recipient suitably
acknowledged (see p. 30).

The Secretaries laid the Obituary Notices before the Meeting
(see p. 31).

Mr. Carruthers then moved a vote of thanks to the President
on his quitting office at the close of four years' tenure, which was
seconded by Prof. Percy Groom, and carried by acclamation. The
President having acknowledged the compliment, the Meeting
ended.
PRESIDENTIAL ADDRESS, 1904.

I begin my Address to-day, as has been my custom on previous Anniversaries, with a brief account of the events of the past year and of the position and prospects of the Society. The longer I have occupied the Presidential Chair, the more impressed have I become with the desirability of placing the fullest information of this kind at the disposal of the Fellows, not only for the purposes of this Meeting, but also for subsequent reference in the Proceedings. It is not necessary for me to insist how important it is that every Fellow should have brought to his notice at frequent intervals what have been the successes and the disappointments of the Society, and what are its aims, its aspirations, its hopes, and its fears: in a word, that every Fellow should be kept as closely as possible in touch with the organic life of this our body. But so strong is my conviction of the importance of this matter, that I venture on this occasion—the last Anniversary Meeting at which I shall have the privilege of addressing you—to make a practical suggestion to ensure its permanent realisation. My suggestion is this—that we should adopt the practice of the Royal Society, and of, I believe, some other learned Societies, in desiring the Council to present an annual report upon the state of the Society's affairs. In this way information that can now only be obtained, if at all, by the searching of minute-books, would be made readily accessible; and, moreover, the series of annual reports would, in the course of time, form an important contribution to the history of the Society. In my present position I can see one weighty objection to the proposal, namely this, that were it carried out it would deprive the President in future of a good deal of material that might be useful for the purposes of his Anniversary Address. But it may be urged, as a compensating advantage, that it would leave the President free to devote the whole of his Address to purely scientific matters.

I began my Address last year with an allusion to the probability that that Anniversary would be the last meeting of the kind "for men only"; and I ventured to anticipate that it would fall to my lot to admit the first Lady-Fellow. At the same time I was cautious enough to hint that the process of obtaining a Supplementary Charter would require time and patience. Owing to the realisation of the last of these three anticipations, the two others remain unfulfilled: so the Fellows are meeting to-day as of yore, and my term of office is not to be rendered memorable by the gracious event to which I have alluded. However I am to-day in a position to announce that the Supplementary Charter has at last been granted. I cannot make this gratifying announcement without adding that the Society is deeply indebted for the successful conduct of this business to the Treasurer, who has borne single-handed the not inconsiderable labour and, with characteristic
generosity, the still less inconsiderable expense that it has involved.

In order that the Supplemental Charter may become operative with as little delay as possible, the Council has been engaged for some time past in preparing a revision of the Bye-laws. This will be submitted in due course to the Fellows for approval; and when that formality has been completed, the new order of things will have been officially inaugurated.

As it may reasonably be expected that when the Supplemental Charter is in operation there will be an appreciable increase in the average number of Fellows, it will be reassuring to know that, should this prove to be the case, the requisite accommodation will be forthcoming. The Society has now at its disposal for this purpose some of the rooms on the upper floor, formerly occupied by the Assistant-Secretary; and quite recently an official intimation has been received to the effect that the rooms in this building at present used by the Post Office will shortly be handed over to us. Not only has our accommodation been increased, but something has been done during the past year in improving what we already possess. Important structural repairs and alterations have been carried out by the Office of Works, and advantage has been taken of this opportunity to redecorate the hall and the staircase, as well as some of the rooms on the upper floor, at a cost to the Society that, thanks to the liberality of the Office of Works, has been little more than nominal. However, a great deal remains to be accomplished in this direction. The adaptation to our requirements of the rooms to be vacated by the Post Office demands immediate attention; only slightly less pressing is the need for the redecoration of the Library and of the Council-room.

The mention of these matters inevitably suggests the question of ways and means. Without intruding into his department, I may venture to say that the Treasurer's statement conclusively shows that the expenditure involved cannot be borne by the present income of the Society, which is hardly sufficient to meet the normal demands upon it. The Treasurer is, I believe, so sanguine as to hope that such an accession of new Fellows may result from the operation of the Supplemental Charter as to substantially increase the revenue of the Society. If that be one of the fortunate results of our new departure, the financial difficulty will be surmounted; otherwise the extraordinary expenditure that I have foreshadowed will have to be met either out of our slowly but surely diminishing capital funds, or, as on more than one previous occasion, by a special appeal to the generosity of the Fellows.

I think I am justified in expressing the opinion that the efficiency of the Society, in all its various departments, has been fully maintained. From the report of the General Secretary you will have gathered that the Society has fairly held its own in point of numbers. The Report of the Librarian will have assured you that that most important department has not been neglected. Nor
can it be said that the scientific activity of the Society shows any falling off. Our publications have maintained their usual high level, covering a wide field of interest, both botanical and zoological. Moreover, as I mentioned last year, we have been issuing the final parts, long overdue, of Messrs. Forbes and Hemsley's 'Enumeration of Chinese Plants,' which ought to be completed within the present year. As regards quantity, we have at any rate published as much as our financial resources have permitted. We have also undertaken to publish—with the assistance of a grant from the Royal Society—a series of papers giving the results of a Plankton Expedition to the Bay of Biscay on H.M.S. 'Research' in the year 1900. These papers, which are eventually to form a separate volume of the Transactions, are being prepared by eminent specialists under the direction of Dr. G. H. Fowler; and two of them—a general account of the expedition by Dr. Fowler, and an account by our Zoological Secretary of the Crustacea collected—have already been communicated to the Society.

It will be remembered that, in previous years, the experiment was tried of marking certain of the meetings as specially botanical or zoological: an experiment that can hardly be said to have been so conspicuously successful as to warrant repetition for another year. Accordingly we have reverted, during the present Session, to the old plan of indiscriminate meetings. However, on reviewing the Session, there can be no doubt that many of the meetings have been of more than usual general interest. I may mention, in illustration, the meeting at which (Dec. 17) Prof. Farmer gave a brief account of his researches on Cancer; the meeting of Feb. 18, which was devoted to a Mendelian discussion, which we owe to Mr. Biffen, Mr. Bateson, and Prof. Weldon; and the meeting of April 7, at which Mr. Enock displayed a remarkable series of slides of insects and flowers in natural colour photography. It is a significant fact that these three important contributions to the success of the Session, involved no publication on the part of the Society. The moral that it points is, I think, this—that the interest of our meetings does not depend solely, or perhaps even mainly, upon the papers that are read with a view to publication. Though such papers are of considerable and permanent scientific value, they are, from the nature of the case, sometimes not calculated to engage the attention of a meeting; they are often more interesting to read than to listen to. Whilst we must do all that we can to encourage the contribution of papers of this calibre, greater effort is, I think, necessary in the direction of stimulating the interest of our meetings by the provision of important exhibitions and subjects for discussion. I venture to assert, without fear of contradiction, that no Society offers greater facilities than our own for the discussion of biological questions as they arise. It is, in fact, my ambition that this aspect of the Society's activity should become more fully recognised: that discussion, altogether tabooed in its early years, should develop, in these latter days, into its
most characteristic feature. It was here that the theory of evolution was first given to the world; why should not this be also the birthplace of the epoch-making biological theories of the future?

Whilst the review of the Session affords ground for satisfaction and for hope, it is by no means devoid of matter for regret. A year ago I expressed the wish that Professor Howes might soon be restored to his useful and indefatigable activity amongst us; and in that anticipation we re-elected him Zoological Secretary. As we all know, to our sorrow, that anticipation has not been fulfilled. At an early period in the Session it became necessary for him to resign his office, which was filled by the election of the Rev. T. R. R. Stebbing, to whom it is impossible to give higher praise than to say that he is emulating the example of his distinguished predecessor. On the occasion of his resignation, the Council transmitted to Prof. Howes a vote of sympathy and of appreciation of his valuable services to the Society, a proceeding that must, I am sure, meet with the heartfelt approval of this meeting.

Our other losses include several valued Fellows, among whom I may specially mention Dr. William Francis, for seven years an Associate and for sixty years a Fellow of the Society, who had long been a member of the well-known firm to whom we entrust the printing of our publications; Isaac Cooke Thompson, the well-known naturalist of Liverpool, who had been Secretary and President of the Liverpool Microscopical Society, and was one of the founders of the Liverpool Biological Society, in connection with which he accomplished most of the scientific work of his later years, devoting himself more especially to certain groups of Crustacea; and Sir Walter Sendall, G.C.M.G., who, in his time, had been Governor of the Windward Islands, of Barbados, and of British Guiana, as well as High Commissioner for Cyprus, and whose death has an especially mournful interest for me in that he was a distinguished member of Christ's College, my own old Cambridge home, where his name was, and will remain, a household word.

We have to deplore the loss, among our Foreign Members, of two eminent biologists:—Dr. Carl Gegenbaur, Professor of Comparative Anatomy in the University of Heidelberg; and Dr. Michael Woronin, of St. Petersburg.

Carl Gegenbaur, one of the most distinguished pupils of Johannes Müller, leaves behind him a record of fifty years' scientific work of the highest character. Some of his earlier years were given up to the study of Invertebrates, but after 1860 he devoted himself entirely to the investigation of the Comparative Anatomy of Vertebrates. Among his many important discoveries in this department of Zoology, perhaps the most fertile was that of the relation between certain of the cranial nerves and the branchial skeleton. An inspiring teacher, as well as a profound researcher, he exercised an exceptional influence upon the development of his subject. It is not too much to say that the present position of
Vertebrate Morphology, as a science, is mainly the result of the labours of Gegenbaur and of his school.

Michael Woronin was a private gentleman of means and position who devoted his time and his energy to botanical research. Inasmuch as he studied under Cienkowsky at St. Petersburg, under De Bary at Freiburg-i.-B., and under Thuret at Antibes, it is not surprising that he should have chosen the Fungi and the Algae as the subjects of his investigations. Having found his congenial work, he pursued it with unwavering tenacity of purpose, producing results that very materially contributed to the remarkable development of knowledge concerning the Thallophyta which characterised the botanical progress of the latter part of the nineteenth century.

We began the Session with two vacancies in our list of Foreign Members, so that there have been four to fill up, though there has only been opportunity to make three elections; one vacancy remains over to next Session. The choice of the Society has fallen upon Dr. Hugo de Vries, Professor of Botany in the University of Amsterdam; upon M. Eugène Louis Bouvier, Professor at the Natural History Museum, Paris; and upon Dr. Carl Chun, Professor of Zoology in the University of Leipsic. Of Prof. de Vries I would say that although he is best known by his recent researches on variation and heredity, based upon the re-introduction of the experimental method, which are being embodied in his great work the 'Mutations-theorie,' he had, at an earlier period, earned a high reputation as a plant-physiologist. Trained in the school of Julius von Sachs, when that great master was in the plenitude of his remarkable powers, Prof. de Vries proved himself to be one of its most distinguished pupils. Beginning with the study of the growth of plants, and more especially of growth-curvatures, he was led on, whilst seeking the explanation of these phenomena, to recognise that they are ultimately due to variations in the turgidity of the growing cells; and then to the investigation of the mechanics of the individual growing cell, a subject that he made peculiarly his own. Prof. Bouvier's well-established reputation as a zoologist, and more particularly as a malacologist, rests upon a series of highly finished systematic memoirs, written to some extent in collaboration with Alphonse Milne-Edwards, a former Foreign Member of this Society, upon material resulting from various deep-sea exploring expeditions, including that of the American vessel the 'Biake' under Agassiz, those of the Prince of Monaco in the yachts 'Hirondelle' and 'Princesse Alice,' and those of the French Government in the 'Travailleur' and the 'Talisman.' Nor must I omit to mention his contributions to our knowledge of that still enigmatical animal known as Peripatus. Professor Chun, well-known in connection with the 'Bibliotheca Zoologica,' has made his mark in marine research. The success of his earlier labours in this direction led to his being selected as the leader of the German deep-sea expedition, effectively carried out in the voyage of the 'Valdivia' during the years 1898-9. His main zoological work
has naturally been concerned with the marine organisms, of which he gathered such rich harvests, and more especially with the Tunicata.

This year the Linnean Medal has been awarded by the Council to a distinguished Zoologist and Comparative Anatomist, who is one of ourselves—Dr. Albert Giinter. I must not anticipate what I shall have to say when the moment of presentation arrives. I would only remind you that his scientific labours have extended over half a century, and that some memorial of them is to be found in the Royal Society's Catalogue of Scientific Papers, where already as many as 240 contributions from his pen are enumerated, and on the shelves of the Zoological Department of the British Museum, where stand the great collections that he arranged and catalogued during many years of strenuous service. If the Royal Society has been impelled to express its recognition of Dr. Giinter's scientific eminence in the concrete form of a Royal Medal, there are still more cogent reasons why the Linnean Society should confer upon him its highest honour.

I fear that I may have been somewhat remiss in the discharge of my duties at previous Anniversaries, in failing to remind the Society that the occasion of our meeting on this day is the commemoration of the birthday of the celebrated Linnaeus. It would ill become a President of this Society to allow his term of office to pass by without any mention of the man who, though not indeed our founder, may be regarded as our patron saint; and least of all would such an omission be pardonable in me who am a successor of Dillenius. Seeing how much has been written about Linnaeus, how fully his life and his work have been discussed from every point of view and at so many different epochs, it may well be doubted whether anything worth saying still remains to be said. But I am inclined to think that perhaps just because he has been the subject of so much discussion, it is worth while to clarify, from time to time, our somewhat confused conception of him, and to reassure ourselves of the grounds upon which we continue to venerate his memory.

It is a common misfortune of great men to suffer from the injudicious praise of over-enthusiastic admirers, which often attributes or exaggerates qualities or attainments without sufficient reason, whilst overlooking those which are the real source of greatness. In this respect, I venture to think, few have suffered more than Linnaeus. Lest I fall into the same error, I propose to place myself altogether on the other side, taking up, for the moment, the position of advocatus diaboli, so that my object will be to prove rather what Linnaeus was not than what he was.

Some of the points in the case can be almost summarily dealt with. For instance, it may be admitted, with, I believe, perfect equanimity, that Linnaeus was not a great Anatomist as regards either animals or plants; in fact I do not know of any botanical work of his that is definitely anatomical in character, unless,
indeed, the interesting dissertation on the buds of trees (Amoen. Acad. ii. p. 163) be regarded as such.

It will not be irrelevant briefly to consider, at this point, the interesting question as to the extent to which Linnaeus made use of the microscope. In his early days he seems not to have used it at all, for in the introduction to the ‘Systema Naturae’ (1735) he says, almost boastfully, that he had examined nearly all the flowers of plants with the naked eye only, and without any microscope. Somewhat later, during his stay in Leyden (1737–8), he had special opportunities for microscopical work, since one of his friends there was “Lieberkühn, a Prussian, having in his possession incomparable microscopes,” who gave microscopical demonstrations. Linnaeus relates that, on such an occasion, he was shown the spermatozoa of a dog (‘Generatio ambigena,’ Amoen. Acad. vi. p. 4; ‘Sponsalia Plantarum,’ Amoen. Acad. i. p. 79), when he drew conclusions as to their nature antagonistic to those of Leeuwenhoek, the original discoverer. But he did not apparently pursue his microscopical studies with any ardour. Among the dissertations forming the ‘Amoenitates Academicae’ there are several dealing with topics that might be supposed to involve the use of the microscope, such as that on the ‘Semina Muscorum’ (Amoen. Acad. ii. p. 261); but in only one is there a definite statement to that effect. In the dissertation ‘Mundus Invisibilis,’ in which an account of the course of microscopical discovery is given (Amoen. Acad. vii. p. 399), the author describes his observations on the Smut of Wheat (Ustilago) made with a Cuffian microscope under the direction of Linnaeus. This is all the information on the subject that I have been able to discover.

Nor can it be urged that Linnaeus has strong claims to distinction as a Physiologist. Though he had as contemporaries such men as Hales, Duhamel, and Bonnet, and was in constant communication with Haller, who was distinguished alike as physiologist and systematist, Linnaeus has not, so far as I have been able to ascertain, left on record a single physiological experiment. Nevertheless he proved himself to be an acute observer of physiological phenomena in nature. Thus in the dissertation ‘Sonnus Plantarum’ (Amoen. Acad. iv.) he describes the daily movements of leaves; in the ‘Philosophia Botanica’ he registers the hours of opening and closing—the Vigils, as he calls them—of flowers, fancifully arranging them so as to constitute a “floral clock.” The dissertation ‘Calendarium Florae’ (Amoen. Acad. iv.) contains a number of phaenological observations as to the dates of leafing, flowering, fruiting, and leaf-fall of plants growing in the Botanic Garden at Upsala. Further, in the ‘Philosophia’ there is a mass of facts illustrating such important biological features as the distribution of plants in relation to climate and soil, and the various modes of dispersal of seeds, which may be regarded as the foundation of that method of study which, under the name “Ecology,” has developed of late into so considerable a superstructure.
Another pertinent question is as to whether or not Linnaeus may be considered to have materially contributed to the discovery of sexuality in plants. In his prize essay, the ‘Disquisitio de Sexu Plantarum’ (1760) he says that it is very difficult to say who first made this discovery. Far from laying any claim to it himself, he mentions Millington, Grew, Ray, Camerarius, and Vaillant as moderns who had more or less clearly stated it. What still remained to be determined was the mode of impregnation. That it is attributable to the pollen was no longer a matter of doubt. Vaillant (1718) had expressed the opinion that it was effected by the transmission to the ovules, not of any material substance, but of a volatile essence exhaled by the pollen-grains. On the other hand, Morland (Phil. Trans. 1704) asserted that the pollen-grains pass bodily down the style into the ovules, there giving rise to embryos. Needham, in his ‘Microscopical Discoveries’ (1745), pointed out that it is impossible for the pollen-grains to reach the ovary, and asserted that the farina, falling on the heads of the pistil, dissolves in the papilla, and the subltest of its parts only penetrates into the tubes leading to the ovary. The chief contribution made by Linnaeus is contained in the dissertation ‘Sponsalia Plantarum’ (1746: Amœn. Acad. i.), where it is clearly laid down that the pollen-grains of plants correspond to the spermatozoa of animals, an inaccurate statement and yet an approach to the truth. Like Needham, Linnaeus denied that the pollen-grains descend into the ovary, rightly stating that they remain on the stigma, where, he thought, they burst and set free their contents, which penetrate to and fertilize the ovules (cf. ‘Generatio ambigena,’ Amœn. Acad. vi.). This is an advance, but not a considerable advance. At the same time it must be recognized that by his general treatment of the subject he established the theory of sexuality upon a sounder basis and in a clearer light than did any of his predecessors.

We come now to the consideration of a more debatable matter—the share of Linnaeus in the progress of Plant-Morphology, the side of botanical science that regards the parts of plants in the abstract, that considers them from the point of view of their development and mutual relations rather than from that of their functions, that determines their homologies rather than their analogies. Without going far back into ancient history, it may be stated that the foundation of modern plant-morphology was laid by Joachim Jung in his remarkable works, the ‘Doxoscopia,’ first published in 1662, and the ‘Isagoge Phytoscopica,’ first published in 1679. In these works are to be found a clear analysis of the plant-body into its constituent members, a description of the members with a precise nomenclature, and a recognition of the essential similarity between the foliage and floral leaves. Although the works of Jung were not much quoted by Linnaeus, yet, as we know, they were included in his library, and, moreover, the ideas and terminology of Jung were fully set out in the first volume of Ray’s ‘Historia Plantarum,’ a work with which Linnaeus was familiar. In these circumstances there can be little doubt
that the Linnean morphology was based upon that of Jung, which, by the time Linnaeus wrote his 'Fundamenta Botanica' (1736), had become common knowledge. That work shews a considerable advance towards a more detailed and comprehensive terminology; but the goal was not reached until the publication, in 1751, of the 'Philosophia Botanica,' which gave to Botany an unrivalled descriptive apparatus, and must always be regarded as one of the greatest of the many great achievements of Linnaeus.

As for the theoretical aspect of morphology, the dissertation on 'Metamorphosis' (Amoen. Acad. iv.) and the two on 'Prolepsis' (Amoen. Acad. vi.) are the recognized contributions of Linnaeus to this subject. The term 'metamorphosis' has certainly a morphological sound, but it must be borne in mind that it did not mean the same thing when used by Linnaeus as it did when used by Goethe. In its modern sense it refers to the adaptation of one and the same member to different functions; it is the expression of the physiological division of labour. Leaves, for instance, may be foliage-leaves, or floral leaves, or pitchered leaves, or tendrils: all essentially the same, yet all functionally diverse. But with Linnaeus the word had a much wider application. It referred, in the first place, to the flowering of plants, a process that seemed to him to correspond to the 'metamorphosis' of a chrysalis into a butterfly; and, secondly, to the occurrence of varieties and monstrous forms. Nevertheless he rightly includes, in the second category, such admitted cases of metamorphosis as the doubling of flowers, and the occurrence of two different forms of foliage-leaves on partly submerged plants.

The idea of 'prolepsis' was introduced as an explanation of the phenomenon of flowering. It is briefly this—that each series of organs in a flower, the bracts, the sepals, the petals, the stamens, the carpels, represents the product of a year's development, so that in the expanded flower there is, as it were, an anticipation of five years' growth. The idea is fanciful and not well-founded: yet the dissertations in which it was expounded contain many interesting and acute observations which clearly show that Linnaeus recognised the morphological identity of floral and other leaves. But in all this there is no definite advance: there is no more than a restatement in novel form of accepted views. A more effective and more convincing method of attacking morphological problems was at this very time being pursued by Caspar Friedrich Wolff, who in advocating epigenesis as against the prevalent theory of evolutionary development, was investigating the actual facts of development in both animals and plants; and it is to him, more than to Linnaeus, that the progress of morphology at this period was due.

There is yet one other controversial point to be raised, and that is the suggestion that some germ of the theory of organic evolution is to be found in the writings of Linnaeus. Such study as I have been able to devote to these writings has failed to discover anything of the kind. On the contrary, it has become more and more clear to me that the idea of the constancy of species is a necessary
part of the whole fabric of the Linnean philosophy. Let me illustrate this statement by a brief reference to his theory of reproduction. Regarding the body of the plant as consisting of a cortical and of a medullary substance, he held the latter to be the principal seat of life and of the reproductive capacity in particular. The medulla extends into the flower and there gives rise to the ovary and the seed, and even to the embryo (corculum) in the seed (‘Philosophia,’ p. 87). Hence he concluded that the development or reproduction of plants (generatio) is essentially a continuation. This being so, it is not surprising to find him drawing the logical inference, that the production of new species of plants is negatived by this continuity in their reproduction (p. 99); or, as he puts it elsewhere (p. 101), ‘that species are most constant because their reproduction is a true continuation.’

It is difficult to imagine how anyone with this mental attitude could be supposed to harbour an idea of the mutability of species. It is, however, true that Linnaeus did admit the possibility of the origin of new species, not indeed by variation, but by hybridisation. In the dissertation ‘De Peloria’ (Amoen. Acad. i.) it is suggested that the peloric form of Linaria may be a new species and possibly a hybrid; and in the dissertation ‘Plantæ Hybridae’ (Amoen. Acad. iii.) the idea of the production of new species by hybridisation is further developed. But this is merely a side-issue, that does not directly bear upon the main question. More relevant is the consideration of his views as to the relation between species and varieties, set forth in the ‘Philosophia Botanica.’ ‘There are,’ he says (p. 100), ‘as many varieties as there are diverse plants produced from the seed of the same species.’ A variety he defines as ‘a plant changed by some accidental cause, such as climate, soil, temperature, winds, &c., and may be restored (to its primitive form) by a change of soil.’ The distinguishing features of varieties are their size, the doubling of their flowers, the crisping of their leaves, their colour, taste, and smell. Further on (p. 225) in the same work he dwells upon the great difficulty and labour involved in the task of distinguishing between species and varieties. Mistakes, he says, are often made on account of the exuberance of nature, of differences of climate and habitat, and of the short term of human life, but they may be avoided by the cultivation of the doubtful plants in various soils and situations, by careful study of the plant itself, especially of its fruit, as well as of allied species, and by remembering that the laws of nature are constant and never make a leap (munquam saltus facientes). That this expression of his ideas as to variation was not satisfactory, even to himself, is apparent from the suggestion subsequently made in the appendix to the dissertation on Hybrid Plants (Amoen. Acad. iii.) to the effect that the varieties of plants do not only depend upon the nature of the soil, nor are they changed by cultivation: ‘the double Peony or Narcissus,’ he says, in illustration, ‘is not changed by the soil into the single form, nor is it on that account a distinct species.’ This important emendation certainly marks an
advance towards the modern conception of variation; but still there is no hint of the suspicion that a variety may become a species. It must, however, be conceded that, from his keen and constant observation of animals and plants in a state of nature, Linnaeus had not failed to recognise what is now termed "the struggle for existence," of which he drew a vivid picture in the dissertation 'Politia Natura' (Amoen. Acad. vi.), without, however, attaining to the idea of "the survival of the fittest" and so to the theory of organic evolution.

If so far the claims of Linnaeus to high distinction have been scrutinised and disputed with some measure of success, further attempt at objection becomes futile when his merits as an organiser of knowledge are brought forward. The state of Natural History early in the eighteenth century was indeed such as to call for reorganisation. The active exploration of the world, and more particularly of the New World, had brought to light such a wealth of new forms that the existing resources of description, of nomenclature, and of classification were proving altogether inadequate to deal with them. Some idea of the condition of Botany at this period may be given in the words of Linnaeus himself. "I praise," says he in the 'Critica Botanica,' "the names given by the old Greeks and Romans, but I shudder at the sight of those given by many recent authors; since they are for the most part nothing but a chaos of confusion, whose mother is barbarism, whose father authority, whose nurse prejudice." In the 'Reformatio Botanica' (Amen. Acad. vi.) we read: "The genera are false and defective and are daily multiplied by new authors and new systems The generic names are for the most part erroneous, barbarous, and Indian names have been given, and the names of other natural objects have been accepted for plants, so that it is not clear whether they indicate a plant or a fish The generic characters were so expressed that they scarcely sufficed to distinguish the known genera: consequently, when a new genus was discovered the characters of the allied genera had to be altered The descriptions of plants are written in so oratorical a style, and in such pompous language, that they filled whole pages."

It must be admitted that Linnaeus was singularly qualified to undertake the herculean task of reducing this chaos to order. As he well says in the 'Systema Natura,' "the first step in knowledge is to know the things themselves"; and this equipment he certainly possessed. No man of his time has shown so comprehensive an acquaintance with animals and plants—to say nothing of minerals—or was more deeply versed in the lore accumulated by his predecessors in the study of Natural History. He combined a wonderfully lucid and methodical mind with indefatigable industry and inexhaustible energy; and the results that he achieved were commensurate with these exceptional endowments. What these results were is so well known that I need not dwell upon them at any length; I will merely indicate the course that he pursued. The first step was the publication, in 1735, of the
"Systema Naturae," which gave the outlines of his method of classifying natural objects, and is of especial interest as containing his artificial "sexual system" of plants based upon the number and position of the reproductive organs of the flower. From this time onward he devoted himself more particularly to the study of plants, so that all his larger subsequent works were mainly or entirely botanical. The "Systema Naturae" was followed, within a year, by the "Fundamenta Botanica," in which the principles of botanical science are clearly and concisely laid down. The year 1737 was marked by the issue, first, of the "Critica Botanica," authoritatively stating rules of nomenclature; and, secondly, of the "Genera Plantarum," in which those rules are applied to the generic names of plants. In the following year appeared the "Classes Plantarum," in which an account is given of all the systems of classification from Caesalpinus onwards, both the earlier and the Linnean generic names being included, together with a fragment of a natural system. In 1751 the "Philosophica Botanica" was published as an expansion of the "Fundamenta," a work which, as Pulteney says, "must be considered as the institutions of the Linnean system of botany," or indeed of any system of botany whatsoever. Finally, in 1753, appeared the "Species Plantarum," the crowning work of the series, in which definite specific names were for the first time assigned to plants. Thus it was that Botany was provided with a precise descriptive language: with generic names based upon fixed characters; with specific names in the place of involved descriptions; and with a system that facilitated the determination of any given plant: changes that have been fitly designated the "Reformation" of the science.

A few words must be devoted to the discussion of the relation of Linnaeus to the development of the natural system of classification. It has been thought, it is sometimes thought even now, that the "sexual system" was devised by Linnaeus as an alternative to the "natural system"; that he was, as it were, the apostle of artificial classification. Nothing could be further from his intention. Not only did he himself elaborate a fragment of the natural system, but he expressed over and over again, and in the clearest language, his conviction that the end and object of every genuine botanist should be to contribute to the elucidation of such a system based upon a recognition of the true affinities of plants. "Let those who can," he says, "amend, extend, and perfect this system, but let those who are unequal to the task desist from attempting it: those who succeed are distinguished botanists." ("Classes Plantarum," p. 487).

Excellent as were the intentions of Linnaeus, there can, however, be no doubt that the enthusiastic acceptance of his artificial system tended rather to impede than to stimulate the pursuit of the natural system. Without any fault of his, the scaffolding that he had found it necessary to erect was taken to be the edifice itself. That this was so is demonstrated by the historical fact
that the development of the natural system proceeded more rapidly in France, where the Linnean system gained but little hold, than in Holland, Germany, or England, where it became firmly established. Linnaeus fully recognised this, and ascribed it to the greater facility offered by artificial methods for the determination of plants. "Some botanists," he says, "would rather read a book in which the plants are arranged alphabetically, than one in which they are arranged according to their characters." "I almost believe," he adds, "that the mind of the botanist is disposed towards some one system from the outset; nence it is perhaps desirable that the beginner should be made acquainted with all the systems so that this stuff might be got rid of once for all" ('Classes Plantarum,' Praefatio).

The sway, amounting almost to sovereignty, that Linnaeus acquired in the realm of Natural History could not, however, have been due to his intellectual qualities alone. Great as these were, they would have failed to effect that Reformation of which I have spoken, had they not been reinforced by a capacity for inspiring to enthusiasm all who came under his influence. That he possessed this crowning gift in a remarkable degree is the only possible interpretation of the outburst of activity in Natural History that followed upon his teaching. Out of the crowds of students who attended his lectures, many became teachers themselves, and not a few travelled far and wide in the Old World and the New in quest of animals and plants. Nor was it exercised only on his pupils; it affected the teaching, the botanical teaching at any rate, throughout Europe, the most distinguished contemporary botanists avowing themselves his disciples.

Such being the man and his work, it is not surprising—quite apart from the special circumstances of the case—that our Society should have been called after his name. And we, the Fellows of to-day, may well be proud, as were the Fellows of 1802, to be thus associated with so great a figure and so momentous an epoch in the history of the sciences that we cultivate.

It is impossible to recall these great days of old without being reminded of the great days within our own experience. If our Society is a living monument to the Reformation brought about by Linnaeus, it was also directly concerned in the Revolution wrought a century later by Darwin. This is not the time to draw a parallel between these two great naturalists; it will suffice to say that, however different in other respects, they both laboured, and laboured triumphantly, to the limit of life and strength, in the cause of Natural History, and both alike have the strongest claim upon our veneration and our gratitude.

I have now exhausted my theme, and were this not an especially memorable occasion for me, I might well bring my address at once to a close. As it is, I cannot forbear a few words by way of epilogue. Once more I would express my profound appreciation of the confidence that raised me to this high and responsible office, and has maintained me therein during all these years.
Only more profound than my appreciation is the misgiving lest my discharge of the multifarious and often difficult duties attaching to this Chair may have failed to justify that confidence. It is no extenuation to say that I have endeavoured to discharge those duties to the utmost of my ability, ever having regard to the best traditions and the highest interests of the Society; that is the least that a President can do. Whatever measure of success may have attended my efforts is to be attributed to the ready and effective help of my colleagues in office, whose co-operation and sympathy have always been at my service, and to the loyal support ever extended to me by the Council. If I am to-day in a position to hand on to my successor, unimpaired, the trust committed to my charge, it is because my ambition to do so has been directed aright by experience more extensive and judgment more mature than I could myself command.

The President then addressed Dr. Günther, and in presenting the Linnean Medal, specified the considerations that had moved the Council to make this award.

The President said:—

“Dr. Günther,—Each succeeding Session of our Society brings with it no event more interesting than the presentation of the Linnean Medal to whomsoever the Society delights to honour. But this year the event is of quite unusual interest, inasmuch as the attendant circumstances are altogether unprecedented. For the first time in our annals a Fellow receives our Medal who has already presented it, and a President presents it to his immediate predecessor in this Chair.

“So well are you personally known, so familiar are your scientific achievements, to the great majority of the Fellows, that any words of introduction or commendation from me might well be regarded as altogether uncalled for, were it not that the regulations insist upon a statement of the grounds upon which the Medal has been awarded. Let me say, then, that our award has been made in recognition of your attainments as a Zoologist, and, more particularly, of your profound and probably unparalleled knowledge of the Lower Vertebrates, as exhibited in such works as the monumental catalogue prepared by you of the Fishes in the collections of the British Museum, in such volumes as those on the Giant Tortoises and on the Reptiles of British India, and in many remarkable memoirs such as those on Hatteria and on Ceratodus.

“Whilst this is the all-sufficient justification of the action of the Council, I am free to admit that where our admiration for you as a man of science led the way, our regard for you as an old and tried Fellow and former President closely followed. It is with this combination of sentiments that I ask your acceptance of the Linnean Medal that it is my privilege to present.”
William Francis, Ph.D. (Giessen, 1842), F.R.A.S. (1851), F.G.S. (1859), became an Associate of the Chemical Society in 1841, a Fellow of that Society in 1842, and a Fellow of the Physical Society in 1876. But of all the learned Societies to which he belonged our own claimed him for the longest portion of his protracted life. The Linnean honoured him with the Associateship on the 21st of February, 1837, and as he was born Feb. 16, 1817, he must have been elected when only a few days over twenty years of age. On Jan. 16, 1844, he was elected to the Fellowship of this Society, which he held for over sixty years, dying on Jan. 19, 1904.

As a student of Chemistry and Entomology, as a translator of scientific writings, as partner in a printing firm famous for its polyglot accuracy, as joint founder, editor, and publisher of learned serials which enjoy a world-wide reputation and a large measure of perennial value, Dr. Francis may be said to have devoted practically his whole life to the service of science. He learned printing under Richard Taylor, who himself adopted the profession of a printer "principally at the suggestion of Sir James Edward Smith, the founder of the Linnean Society, and a very intimate friend of his parents" (Journ. of Proc. L. S. p. xxxvii, 1859). R. Taylor, on the 18th of May, 1803, at the age of twenty-two, established himself in partnership with his father. It was not till 1852 that he took into partnership his former apprentice, W. Francis, who has so recently left our ranks. But between them, without a break, these two eminent scientific printers, Taylor and Francis, have had a business career all but completely synchronising with the corporate life of this Society from its original Charter at the opening of the nineteenth century down to the Supplemental Charter of to-day. Of the serials which they jointly planned and vigorously maintained the one most widely known is probably that which began its course in 1838 as the 'Annals of Natural History.' Charles Darwin, at a time when the state of his health to a great degree debarred him from the study of books, says, in a letter to J. D. Hooker, "I confine my reading to a quarter or half hour per day in skimming through the back volumes of the 'Annals and Magazine of Natural History,' and find much that interests me" (Life and Letters, edited by his son, Francis Darwin, vol. iii. p. 40). Among zoologists, in particular, there can indeed be very few who will not from time to time be almost under a necessity of consulting these volumes, very few who will not, beyond the immediate necessity, find something worth studying and recalling to mind in this long record of research and controversy, embracing in a manner at once liberal and judicious the almost innumerable branches of their subject. It is true that in maintaining the standard of the magazine Dr. Francis was associated with successive groups of co-editors greatly distinguished for their several attainments. He was their worthy colleague.
Dr. Charles Henry Gatty was born in the year 1835, went to Trinity College, at Cambridge University, graduated B.A. in 1859 and M.A. in 1862. He devoted much attention to natural science, especially zoology, and was elected Fellow of our Society on the 15th March, 1860; two years later he joined the Geological Society. In the summer of 1892 he gave an intimation to the University of St. Andrew’s of a gift of £1000, which he doubled during the autumn of the same year, for a marine laboratory; in 1895 he voluntarily added another sum of £500 for fitting up tanks, engine, and other furniture, which he afterwards supplemented by a gift of a second sum of £500. Our late Fellow thus gave in all £3000 to the laboratory now known as the Gatty Marine Laboratory, which was formally opened by Lord Reay on the 3rd October, 1896.

Professor M’Intosh says: “Previously we had the St. Andrew’s Marine Laboratory at the harbour, and Dr. Gatty and I would have wished to erect the new one on the site, so full of old associations, but the wooden building was on a common. We therefore had to go to University ground 500 yards or so south. The Government severed its slender financial connections for the support of the old laboratory under the Fishery Board for Scotland, and the first British laboratory, though it was only from £70 to £90 a year, as soon as we ‘flitted’ to the new building, and this after 12½ years’ work for the Board.”

In recognition of this munificent gift the University of St. Andrew’s conferred upon him the honorary degree of LL.D.

In his own immediate neighbourhood at East Grinstead he built and fitted up a hospital for the sick. Living all his life unmarried, he became towards the close of it somewhat of a recluse and eccentric in his habits. He died at his Sussex residence, Felbridge Place, East Grinstead, in December 1903, aged 68.

Carl Gegenbaur was born in 1826, August 21, and died last year on the 14th of June. He became a Professor early in life, holding the Chair of Anatomy for a long period at Jena and for a much longer period at Heidelberg. From first to last he was a man of science pure and simple. His autobiographical sketch, ‘Erlebtes und Erstrebtes,’ by its epigrammatic title promises something different from this, but apparently what he did with his life and what his life did with him were factors of existence in uncommonly little antagonism. His choice of a career was imperilled indeed for a moment by the unprescient worldly wisdom of his father. Sixty years ago it may have been difficult to forecast his chances of making either a great reputation or a modest livelihood out of natural science. Fortunately, however, the parental opposition was diverted, so that the young Carl’s education was allowed to follow lines consistent with his tastes and ambition. He speedily justified his own selection of the field in which his energies were to be displayed. It was no narrow one. Among his treatises we find investigations on Pteropoda and
Heteropoda, on Amphibia and Reptilia, on Monotremes, on human anatomy, on the comparative anatomy of vertebrates in general, and, finally, on the comparative anatomy of vertebrates viewed in relation to that of invertebrates. His celebrated text-book, 'Grundzüge der vergleichenden Anatomie,' was translated into French under the direction of Carl Vogt, in 1874, and into English by Professor F. Jeffrey Bell, in 1878. Of the English rendering, one chapter was executed by Professor Ray Lankester, who revised the whole, and also contributed an important preface. In form this introduction can scarcely be called eulogistic. To a large extent it is occupied by criticism of Gegenbaur's work, against some parts of which serious objections are urged. It is no uncommon fate, as we know, for books and the characters of men to be "damned with faint praise," but in this instance, on the contrary, the treatise is avowedly extolled by the very act of fault-finding. For, as the English professor explains, he would never have been at so much pains to make the book accessible to his own pupils had not its particular defects been overborne by extraordinary merit on the whole.

In an acutely discriminative essay on Gegenbaur's life and work, Dr. Adolphe Kemna calls attention to an important service which he rendered to the theory of evolution. One of the most formidable objections that theory has had to encounter consists, as is well known, in the difficulty of conceiving a commencement for organs which, like wit, are futile without finish, and which have, so to speak, no motive for improvement until they have already been improved. In this objection the resourcefulness of nature was undervalued. Structures that have served a forsaken purpose may be re-adapted to a new function. In Dr. Kemna's opinion it was Gegenbaur's special merit to have perceived the fruitfulness of this view, to have shown its application in various instances, and to have pointed out the part played by proximity within the organism when one of its organs is bent on annexing the materials of another.

Gegenbaur's great abilities received abundant recognition in this country, the Linnean Society leading the way by electing him a Foreign Member in 1877. This example was followed by the Zoological Society in 1879, and by the Royal Society in 1884. The Royal Society awarded him the Copley Medal in 1896. That he edited the 'Morphologisches Jahrbuch' continuously from its inception in 1876 to the close of his life is a proof that his devotion to science never flagged.

Dr. Edward Hamilton, who died at his residence, 20 Redcliffe Gardens, South Kensington, on 3rd August, 1903, was one of our senior Fellows, having been elected on 16th January, 1844.

He was born in 1815, educated at Harrow and University College, London, and was one of the first to practise homoeopathy in London, being a pupil and friend of Dr. F. F. Quin. His
principal publication was the 'Flora Homeopathica,' in two volumes of 68 coloured plates and text, issued in 1852–53. He was attached to field-sports all his life, and was twenty years a Vice-President of the Zoological Society; he also took a warm interest in artistic matters, his Catalogue of the engraved works of Sir Joshua Reynolds being of standard value. Other publications of his were 'The Riverside Naturalist,' 1890; 'The Wild Cat of Europe,' 1896; 'The Wild Cat of Scotland,' 1897; and he edited his brother's 'Records of Sport in Southern India ... between 1844 and 1870,' in 1892.

Philip Brooke Mason, M.R.C.S., F.L.S., F.E.S., who died at Burton-on-Trent on November 6th, 1903, aged 61, was a well-known physician in the Midlands, and might have obtained a high position in London but for the fact that, on the death of his father, while he was quite young, he was obliged for family reasons to succeed to his practice in Burton. He gained seven gold and silver medals at University College, London, as well as three exhibitions for pathological anatomy, medicine, and surgery. In the Hospital he was house-surgeon to Mr. Erichsen and Sir Henry Thompson; and in 1866 he was appointed Demonstrator of Anatomy in University College, and held that appointment for three years. From his earliest years he was a collector of objects of natural history; in fact, he used to say himself that he began to collect when four years old. His chief bent, on the whole, was towards the British Coleoptera, but he formed collections of nearly everything belonging to the British Fauna, besides amassing a very fine collection of British plants. In 1889 he made an expedition to Iceland, but no records of his numerous captures appear to have been made, except of the Trichoptera, which were worked out by Mr. MacLachlan. As he grew older, Mr. Mason did very little actual collecting, but he spent large sums in acquiring well-known British collections; among these were Mr. E. C. Rye's Coleoptera, and the Rev. A. Matthew's Trichopterygidae, and also the Aculeate Hymenoptera of Mr. F. Smith, and the Hemiptera of Mr. Douglas and Mr. Scott; the chief amounts, however, which he expended were on the British Lepidoptera; beside large numbers of specimens which he bought at various sales, he acquired the famous old collection of Edwin Shepherd of Fleet Street, and also the collections of Mr. T. Wilkinson and Mr. Douglas. His collection of British Lepidoptera is probably the finest in existence, and we are very sorry to hear that it is likely to be dispersed.

Mr. Mason was elected a Fellow of the Linnean Society on 6th June, 1872; and he served for some time on the Council of the Entomological Society.

He was by no means a mere collector, for he was a man of wide knowledge and reading, but he published very little; at his own expense he brought out the works on the Corylophidae and
Sphæridæ and the supplementary Trichopterygidæ, of which the Rev. A. Matthews had left the unfinished MSS. at the time of his death, but he had no time for original research owing to the exigencies of his very large and widespread professional practice.

Mr. Mason was greatly respected in Burton-on-Trent and will be much missed in many ways. The 'Lancet' of November 13th, 1903, speaks of him as "a man of sterling qualities and excellent intellectual gifts," but only those who knew him intimately can bear testimony to the simple geniality of his character and his true kindliness of heart.

[Edward W. Fowler, A.L.S., who died in 1903, first appears in the records of the Society at a very distant date. The minutes of the meeting held March 18, 1856, giving a variant of his name, say: "Edward Penny of Poole, in the County of Dorset, was proposed as an Associate, and his Certificate signed Thos. Bell, Pres'.", James Salter, Robert Bentley, was ordered to be suspended."

His election followed on the 3rd of June, but in the long subsequent period during which he held the Associateship we do not find that he ever contributed to the Transactions or the Journal. The Royal Society Catalogue assigns but a single paper to his name, and that an essay of very small extent, published in the Pharmaceutical Journal for 1852, on "Similarity in the Medical Properties of two Species of Cotyledon." Mr. Penney observes that "it would be interesting to know whether the leaves of the Cotyledon umbilicus, or any other crassulaceous plant in this country, possess the same property of removing corns" as that attributed in Pappe's 'Prodromus' to the South-African Cotyledon orbiculata, Linn. We may well suppose that the youthful author's own feet were at the time in too sound a condition to permit of his solving the problem by a personal experiment. The medical virtues of the plant in question are an accepted part of "folk-medicine." Mr. Penney at the close of his life was still of Poole, Dorset, as he had been at the time of his nomination.

Sir Walter Joseph Sendall, G.C.M.G., Hon. LL.D. Edinb., was born at Norwich, on Christmas Eve, 1832, the youngest son of the Rev. S. Sendall; he was educated at Bury St. Edmunds Grammar School, and Christ's College, Cambridge, where he was in residence with Walter Besant and C. S. Calverley (whose sister he married). Sendall obtained a first class in the Classical Tripos and was a Junior Optime in the Mathematical Tripos. He joined the educational branch of the Ceylon Civil Service in 1859; in 1870 he became Director of Public Instruction there; in 1876 General Inspector of the Local Government Board, in London, and two years later its Assistant Secretary. Nominated in 1882 Governor of Natal, the appointment was opposed by the Colony, and Sir Henry Bulwer was appointed in his place. In 1885 he
became Governor of Barbados, in 1892 High Commissioner in Cyprus, and in 1898 Governor of British Guiana, from which he retired in 1901. At the time of his death, on 1st May, 1904, in London, of congestion of the lungs, he was Chairman of the Charity Organization Society. He was elected Fellow of the Linnean Society on 3rd December, 1891.

Isaac Cooke Thompson was born July 27, 1843, became a Fellow of the Linnean Society Dec. 1, 1887; died Nov. 6, 1903. He was a chemist by profession and a naturalist from his boyhood. As a young man he attended classes in science at the Liverpool Royal Infirmary School of Medicine, distinguishing himself by his attainments in botany, and industriously forming a large herbarium of local plants, for which he obtained a special prize. In those days he would walk fifty or sixty miles a day in search of rare specimens, and being a teetotaller he accomplished these long distances without recourse to stimulants. He was a great traveller by land and sea; an ardent hill-climber, ascending Mont Blanc and Monte Rosa in 1868; a vigorous athlete in many exercises, with a special devotion to swimming. "It was his regular custom, when on scientific expeditions at Puffin Island or Port Erin, to begin the day with a plunge and a swim before breakfast, and no weather deterred him." Professor Herdman, from whose memoir most of these facts are taken, "has been routed out of bed and conveyed off to bathe by his friend more than once in December and January, over ground covered with snow." One may perhaps sorrowfully reflect that Thompson trusted too far to an iron constitution, and made demands upon it beyond what even the most rigid temperance in other respects could justify. His mental activity matched his physical powers of endurance. Thirty years ago he was already an accomplished microscopist. He held successively the posts of Secretary and President of the Liverpool Microscopical Society, coming to be recognized, in succession to Dallinger and Drysdale, as the leading local authority on the microscope.

Along with Herdman, A. O. Walker, and others, Thompson was one of the founders of the Liverpool Biological Society and its Marine Biology Committee. "It is in connection with the latter, and during the last twenty years, that most of his original scientific work has been done." In that period he "acquired a wide acquaintance with the Crustacea, and an intimate detailed knowledge of the Copepoda and some allied groups of Entomostraca." His "Copepoda of Madeira and the Canary Islands, with descriptions of new genera and species," was published in our own Journal in 1900 (vol. xx.), but, as was natural, a long series of his papers appeared in the Transactions of the Liverpool Biological Society. From time to time the Journals and Proceedings of other Societies contained essays from his pen, generally on the
same favourite subject of the Copepoda. Just before his death he had completed, in partnership with Mr. Andrew Scott, A.L.S., an important Report upon the Copepoda of the Ceylon Pearl Banks, for Herdman's great work on the Pearl Oyster Fisheries of that island, now in course of publication by the Royal Society.

The impression produced by I. C. Thompson on those who met him only at irregular intervals fully agrees with the opinion expressed by his intimate friend. He seemed to be a man of solid worth, without caprice of temper, uniformly actuated by genuine kindness. His biographer speaks of the large number of men, well qualified to judge, who "had learned to appreciate, not only his scientific knowledge and skill, but also his honest, fearless, upright character and his bright and sympathetic loving nature."

Michael Woronin was born at St. Petersburg on July 21st, 1838; he came of a wealthy family, and was thus in a position to devote himself wholly to scientific research, for which he early showed a strong inclination, without the necessity of seeking any official post. At the University of St. Petersburg he was a pupil of Cienkowski's, whose influence no doubt first attracted him to the study of the lower plants to which his life's work was mainly devoted. When, after taking his degree, he went to Germany, and entered De Bary's laboratory at Freiburg, his career as an investigator began. Woronin was one of the most brilliant of De Bary's disciples, and perhaps followed more closely than any other in the footsteps of his distinguished teacher, both in method and spirit. Although his first botanical publication was on an anatomical subject (the anomalous stem of Callycanthus), it was among the ThallopHYTA that his characteristic work was done. Beginning with an investigation of the Siphonous Alge Acetabularia and Espera, carried out under Thuret at Antibes, Woronin, throughout his life, continued to produce a remarkable series of researches, either alone or in co-operation with others, on Algae, Fungi, and Mycetozoa. Of his algological investigations, that on Botrydium granulatum, published in conjunction with Rostafinski, is perhaps the best known, though not free from error. Among his far more numerous works on Fungi, those on the Chytridinæ (in co-operation with De Bary), on Ascotholus, on Exobasidium, on the Ustilagineæ (partly in conjunction with De Bary), on Puccinia, and on Sclerotinia, in which last Nawaschin was a collaborator, may be mentioned as of fundamental importance. His researches on Ceratium (in which he was associated with Famintzin) and on Plasmodiophora are among the most valuable contributions to the life-history of the Mycetozoa. No one has done more than Woronin, if we except De Bary himself, to advance our knowledge of the groups at which he worked. "Woronin's hypha" is a term familiar even to students, and recent researches have tended to emphasize the importance of this organ in relation to fertilization in Ascomycetes.
Woronin is described by those who knew him as a man of the simplest and most unselfish character, wholly devoted to the science he loved. Apart from original work, he gave his assiduous services for 30 years as Botanical Secretary to the St. Petersburg Society of Naturalists; and was in many ways an active supporter of the cause of Science in his native country. His death took place at St. Petersburg on February 20th, 1903.

Woronin was elected a Foreign Member of the Linnean Society on 2nd May, 1895.

June 2nd, 1904.

Prof. William A. Herdman, F.R.S., President, in the Chair.

The President, on taking the Chair, briefly thanked the Society for his election, mentioned that the Linnean Society was the first scientific society he joined, early in life, expressed his continued interest in its welfare, and assured the Members that his earnest endeavour would be to maintain the high standard set by his distinguished predecessors in the Chair.

The Minutes of the Anniversary Meeting of the 24th May were read and confirmed.

The President announced that he had appointed Mr. F. Crisp, Dr. A. Günther, Mr. A. C. Seward, and Prof. S. H. Vines to be Vice-Presidents for the ensuing year.

The following resolution of the Council was read from the Chair, as enjoined by the Bye-Laws, Chapter XIV. Section 5:-

Resolution of the Council, 2nd June, 1904, and ordered to be communicated to the Fellows, in accordance with the Charter of the 26th March, 1802:—

That the existing Bye-Laws of the Society be and they are hereby repealed and that the following Bye-Laws be established in lieu thereof.

(Signed) W. A. Herdman, President,
 D. H. Scott,
 Thomas R. R. Stebbing,
 Secretaries;

whereupon the President read the draft revised Bye-Laws from the Chair, the first time, with the exception of Chapters VII. and IX., in which no alteration had been made.

Mr. V. I. Chamberlain and Mr. T. Christy enquired when discussion would take place; the President, in reply, stated it would be at a subsequent meeting.
Mr. A. O. Walker exhibited (1) viviparous plants of *Cardamine pratensis*, which phenomenon was unusually manifest this year, probably due to the abnormal rainfall, and (2) a gall on the flower-bud of the same plant, ascribed to *Cecidomyia cardaminis*.

Dr. Scott, in remarking that the state of vivipary was to be found in most years in some degree, alluded to a paper by A. Hansen on the subject more than 20 years ago (Abh. Senckenb. naturf. Ges. xii. 1881).

Prof. T. M. Fries, F.M.L.S., who was present, had given a set of prints of portraits of Linnaeus from his recent volumes on the career of his eminent countryman, and, speaking in German, expressed his gratification at the facilities afforded him, during a stay of a few weeks in London, of access to the whole of the Linnean manuscripts.

The General Secretary reminded the Fellows of a paper by Mr. W. Carruthers, which was an amplification of one of his Presidential Addresses, and read on the 4th March, 1897, in which the various portraits had been photographed for reproduction.

Mr. W. T. Hindmarsh exhibited photographs of the following plants:—*Primula deorum*, Velen., which he had succeeded in flowering, he believed for the first time in this country; *Shortia uniflora*, Maxim., the Japanese representative of the genus, with larger flowers than the original *S. galacifolia*, Torr. & Gray, and showing a tendency to vary in colour according to exposure; and *Rhodothamnus Chamacistis*, Reichb., noteworthy for the abundance of its flowers.

The following papers were read:

2. "Biscayan Plankton.—Part III. The Chaetognatha.” By Dr. G. H. Fowler, F.L.S.

June 16th, 1904.

Prof. William A. Herdman, F.R.S., President, in the Chair.

The Minutes of the last Meeting were read and confirmed.

Major Geo. Henry Evans was elected, and Mr. Richard Thomas Baker was admitted a Fellow of the Society.

The Resolution of Council of the 2nd June relative to the revised Bye-Laws, and the Bye-Laws themselves, were read a second time from the Chair.
Dr. E. Drabble, F.L.S., exhibited lantern-slides of an abnormal root of Dandelion, *Taraxacum officinale*, Weber, which had divided and afterwards reunited. A discussion ensued, in which Mr. F. N. Williams, Rev. T. R. R. Stebbing, and Dr. D. H. Scott took part; and Dr. Drabble replied.

Mr. R. Brooks Popham, F.L.S., sent for exhibition some Calculi from the Horse (see page 42).

Mr. Thomas Christy remarked on the occurrence of these concretions at Shanghai, and the methods employed by the Chinese grooms to rid their charges of them; Mr. F. N. Williams also contributed a few remarks.

Canon F. C. Smith, F.L.S., sent for exhibition a handsome inflorescence of a scrambling shrub from Freetown, Sierra Leone, in habit resembling our native *Clematis Vitalba*. It proved to be *Rhynchosia calycina*, Guill. & Perr., which is widely spread in tropical Africa, reaching Rhodesia.

The following papers were read:—

1. "Variations in the Arrangement of Hair in the Neck of the Horse." By Dr. Walter Kidd. (Communicated by Dr. F. G. Parsons, F.L.S.)

2. "An Account of the Jamaican Species of *Lepanthes*." By Mr. W. Fawcett, F.L.S., and Dr. A. B. Rendle, F.L.S.

3. "On the Blaze-Currents of Vegetable Tissues." By Dr. A. D. Waller, F.R.S. (Communicated by Prof. J. B. Farmer, F.L.S.)

5. "The Place of Linnaeus in the History of Botany." By P. Olsson Seffer. (Communicated by B. Daydon Jackson, F.L.S.)
ABSTRACTS.

April 21st, 1904.

Mr. R. Morton Middleton, F.L.S., exhibited a holograph letter from Linnaeus to Haller, of which the following is a copy:—

Viro Illustri
DD ALB: HALLERO
Medico & Botanico Consumatissimo
S[alutem] pl[urimam] d[icit]
CAROLUS LINNAEUS.

Cum ante octiduum Stockholmiæ eram, Academia Regia Scientiarum Stockholmensis Membra extranea nominavit; uti Gesnerum, Jussiaum, Te, Gmelinium, Sauvagesium, Clayonum, Collinsonum, Swietenium, mihi in mandatis dedit prædicta Societas et Academia, ut Te hisce literis perofficiose vocarem, et invitarem; hocce, levidense licet, animi mei pignus non respuas, qui natus es in Scientiarum reformationem atque restitutionem. Quod si benigne excipias literas mittas ad Academiam Regiam Scientiarum Stockholmiæ, ipsique significes Te hasce meas accepisse. Vale.

Dabam Upsalæ 1747.
D. 12 Maii.

The address is as follows:—

Medico & Botanico Summo
DD ALB: HALLER
Archiatro, Consiliano & Professori
Societ. Scient. Upsal. & Stockholm. Soc. [sic]
Göttingen.

This letter was printed in Latin in 'Epistolæm ab Eruditis Viris ad Alb. Hallerum,' published at Berne in 1773, vol. ii. p. 326. It is also printed in Smith's 'Correspondence of Linnaeus,' vol. ii. p. 415. The seal, of red wax, is still sharp; it is engraved in the Memoir of Linnaeus published at Upsala and Stockholm in 1823. The device upon this seal is Linnea borealis within a ring round which two snakes are twisted as supporters. Motto, "Dioscorides Secundus." Above the ring is an open book, bearing on the dexter page the motto "Nunquam otiosus," while on the sinister side the sun sheds its rays from the upper corner.

The letter had been of late years in the possession of a clergyman.
in the North of England. It is of considerable interest, as having made Linne and Haller friends again after a misunderstanding.

Mr. Middleton also stated that he had recently had an opportunity of examining the fine series of letters from Linnaeus in the British Museum, 45 in number, viz.:

- 2 early ones to Sir Hans Sloane, 1736, 1737;
- 1 to da Costa, 1759;
- 2 to Solander, 1760, 1762;
- 3 to Carbury, 1763;
- 37 to Gouan, 1765 to 1771.

Of these, one only (that to da Costa) appears to be printed in Smith's 'Correspondence.' One to Gouan (1766) has a pencil drawing of Siren lacertina. All are dedicated and signed at the beginning (like the one to Haller above quoted) until December 1768, when the first signature at the end occurs. One (12th December, 1770) is dated at the top, according to modern custom.

June 16th, 1904.

Calculi from the Horse. By R. Brooks Popham, F.L.S.

The stones, presented to the owner by the late Mr. Young, M.R.C.V.S., were obtained post-mortem. The two largest are from an animal used in a coal-cart, a smaller specimen broken up (not shown) proved the nucleus to be composed of a small piece of coal, evidently eaten with the food. The animal died of enteritis.

The third stone, with all the loose ones, are from another animal, showing facets well marked, and the nucleus in one broken open. Over a hundred of these smaller ones may be sometimes found in the same horse.

The ordinary intestinal concretion of horses is the triple phosphate, and invariably with a foreign body for a nucleus—a pebble for instance,—and are found in stomach, cæcum, or other part of intestinal canal, the phosphate of magnesia contained in wheat, oats, and hay helping to the production. Another common method of formation is the swallowing of hair from the coat of animals repeatedly licking themselves, forming "hair-balls," which are covered by earthy crust and found in the stomach and alimentary canal of cows, goats, etc. In the Royal Coll. of Surgeons Museum there is one of this description measuring 40 inches in circumference.
ADDITIONS AND DONATIONS
TO THE
LIBRARY.
1903–1904.

Albany Museum. See Grahamstown, South Africa.

XXIV. Recherches sur l'existence normale de l'arsenic dans l'organisme. Par Gabriel Bertrand. (1903.)

XXV. Mollusques Hétopodes provenant des Campagnes des Yachts Hirondelle et Princesse-Alice. Par A. Vayssière. (1904.)

Apstein (Carl). See Nordisches Plankton: Salpen und Cladoceen.

Arkle (J.). A List of Lepidoptera found in the Counties of Cheshire, Flintshire, Denbighshire, Carnarvonshire, and Anglesea. See Chester Society of Nat. Sci. &c.: Proc. No. 5.

H. & J. Groves.

Bauhin (Jean). See Legre (Ludovic). La Botanique en Provence au XVe Siecle.

Beiträge zur Kryptogamenflora der Schweiz (continued).

Berlin.

III. Quadrupeds. Pp. xi, 526. (1885.)

IV. Æsop’s Fables. Pp. xxiv, 376. (1885.)

Bibliotheca Botanica (continued).

Heft 60. Ursprung (Alfred). Die physikalischen Eigenschaften der Laubbliitter. Pp. 120, mit 27 Figuren im Texte und 9 Tafeln. 1903.

Bibliotheca Zoologica (continued).

Band XVII. Heft 40. Strassen (Otto L. zur). Geschichte der T-Riesen von Ascaris megalocephala. Teil I. Pp. 37, mit 5 Tafeln & 12 Fig. im Texte. 1903.

Bingley (William). Memoirs of British Quadrupeds, illustrative principally of their habits of life, instincts, sagacity, and uses to mankind; arranged according to the system of Linnaeus. 8vo. London, 1809. — A Synopsis of British Quadrupeds. [Published in the Memoirs of British Quadrupeds.] 8vo. London, 1809.

British Museum (continued).

On a Young Stage of the White Sole. Pleuronectes (Glyptococephalus) cynoglossus. See Holt (Ernest W. L.).

Calvet (Louis). Bryozoaires ('Hirondelle'). See Albert.

Cambridge Natural Science Manuals. Biological Series. General Editor—ARTHUR E. SHIPLEY. Svo. Cambridge, 1895-.

Canada.

Geological Survey.

Cape of Good Hope.

Department of Agriculture.

Carnegie Institution. Desert Botanical Laboratory of the. See Washington.

Chamberlain (Charles Joseph). *See Coulter (John Merle).* Morphology of Angiosperms and Spermatophytes. (Morphology of Spermatophytes, Part II.)

Cherler (Jean Henri). *See Legré (Ludovic).* La Botanique en Provence au XVIe Siècle.

Chester.

Chester Society of Natural Science, &c.

Proceedings, No. 5. A List of Lepidoptera found in the Counties of Cheshire, Flintshire, Denbighshire, Carnarvonshire, and Anglesea. Compiled and Edited by George O. Day, with the assistance of J. Arkle, Herbert Dobie, and Robert Newstead. 8vo. Chester, 1903.

Coville (Frederick Vernon). *See Washington.* Carnegie Institution.

Darwinism, Doubts about, by a Semi-Darwinian. *See Morrison (Charles).*

David (Alexander J.). *See Dyer (Bernard).* Fertilisers and Feeding Stuffs, their Properties and Uses.

Dourez (Valerand). *See Legré (Ludovic).* La Botanique en Provence au XVIe Siècle.

Drummond (James). *See Hutton (Frederick Wollaston).* The Animals of New Zealand.

Dublin.

C. F. Argyll Saxby.

Essex and Kent Sea Fisheries Committee. See Sea Fisheries.

Flora of Preston and Neighbourhood. Compiled by the Members of the Botanical Section of the Preston Scientific Society during the Years 1897-1902. Svo. Preston, 1903.

LINN. SOC. PROCEEDINGS,—SESSION 1903-1904.

Glasgow.

Grahamstown, South Africa.

Albany Museum.

Guinness Research Laboratory. See Dublin.

Hampstead.
Hampstead Scientific Society.
Report for 1903. 8vo. Hampstead, 1904.

2 vols. Plates 135. (1880–81.)
1 vol. Table Alphabetique. Pp. 120. (1884.)
1 vol. Text. Pp. 235. (1885.)

— On a Young Stage of the White Sole, Pleuronectes (Glyptcephalus) cyanoglossus. Pp. 3; plate 1. (Rep. Sea and Inland Fisheries of Ireland for 1901.) Svo. Dublin, 1903. Author.

Humphrey (James Ellis). See Zimmermann (Albrecht). Botanical Microtechnique.

Hutton (Frederick Wollaston) and Drummond (James). The Animals of New Zealand, an Account of the Colony’s Air-breathing Vertebrates. Pp. xiv, 381; with 147 illustrations. Svo. Christchurch etc., 1904. F. W. Hutton.

India.

Geological Survey.

Memoirs (Palaeontologia Indica).

Ser. IX. The Jurassic Fauna of Cutch.

Ser. XV. Himalayan Fossils.

Kent and Essex Sea Fisheries Committee. See Sea Fisheries Committee.

Knight (Thomas Andrews, the late). A Selection from the Physiological and Horticultural Papers published in the Transactions of the Royal and Horticultural Societies; to which is prefixed a Sketch of his Life. Pp. xii, 379; pls. 7 and portrait. Roy. Svo. London, 1841.

Lawes Agric. Trust.

Opera, Tomus I.

Opera, Tomus II.

Opera, Tomus III.

— Opera Omnia, seu Arcana Naturæ, ope exactissimorum microscopiorum detecta, experimentis variis comprobata, Epistolis, ad varios illustres Viros, ut et ad integram, quæ Londini floret, Sapientem Societatem, cuius Membrum est, datis, Comprehensa, & Quatuor Tomis distincta. Editio Novissima, prioribus emendatior, cum indicibus cuique Tomo accommodatis. Pp. 64, 258.

Opera, Tomus IV.

4to. Delphi, 1719. Misses Busk.

Lewistown, Montana.

Fergus County Free High School.

Liebig (Justus von). Nach dem Leben gezeichnet. See Knapp (Georg Friedrich).

Linsbauer (Ludwig). Wiesner und seine Schule. See Linsbauer (Karl).
Liverpool.
Liverpool Marine Biology Committee.
London.
Royal Society.
—— Where are the largest Trees in the World? (Sydney Morning Herald, Monday, March 21st, 1904, p. 3.) Svo. Sydney, 1904.
Manchester.
Botanical Exchange Club of the British Isles.
Manila.
Department of the Interior.

Communication respecting his Sylloge generum specierumque plantarum cryptogamarum etc. (Compt. Rend. vol. 41.) 4to. Paris, 1855.

Müller (Gustav Wilhelm). See Nordisches Plankton. Ostracoden.

Munich.

Königlich-bayerische Akademie der Wissenschaften.

Nanninga (Dr. A. W.). Invloed van den bodem op de samenstelling van het Theeblad en de kwaliteit der Thee. Deel II. Pp. 56. (Mededeel. 's Lands Plantentuin Buitenzorg, lxii.) 8vo. Batavia, 1904.

Newcastle-upon-Tyne.

Natural History Society of Northumberland, Durham, and Newcastle-upon-Tyne.

Nijmegen.

Dr. Hans Schinz.

Author.

Poulton (Edward Bagnall). See Hope Reports.

Preston.

Preston Scientific Society.

Flora of Preston and Neighbourhood. Compiled by the Members of the Botanical Section of the Preston Scientific Society during the Years 1897-1902. Svo. Preston, 1903.

Ray Society. Publications (cont.).

Retzius (Anders). Skrifter i skilda amnen jämte några bref af A. R. See Retzius (Gustaf).

I. Das Gehörorgan der Fische und Amphibien. (1881.)

II. Das Gehörorgan der Reptilien, der Vögel und die Säugethiere. (1884.)

Biologische Untersuchungen, I., II. 4to. Stockholm, 1881-82.

See Key (Axel). Studien in der Anatomie des Nervensystems und des Bindegewebes.
Rhumbler (Ludwig). *See Nordisches Plankton.* Foraminiferen.

Svo. Singapore, 1903.

Ross (Hermann). Die Gallenbildungen (Cecidien) der Pflanzen, deren Ursachen, Entwicklung, Bau und Gestalt. Ein Kapitel aus der Biologie der Pflanzen. Pp. 39; mit 52 Fig. im Text und auf einer Tafel.

Svo. Stuttgart, 1904.

Rothamsted.

— Memoranda of the Origin, Plan, and Results of the Field and other Experiments conducted on the Farm and in the Laboratory of the late Sir John Bennet Lawes, Bart. 58th Year of the Experiments.

4to. London, 1901.

— and its Work. *See Lawes (J. B.) and Gilbert (J. H.).*

Saccardo (Pietro Andrea). *See Penzig (Ottone).* Icones Fungorum Javanicorum.

Sawer (Charles John). Citronella and Lemongrass. Pp. 4; figs. 10. (Reprinted from the Chemist and Druggist, July 30, 1904.)

Saxby (C. F. Argyll). *See Edmonston (Thomas).* Flora of Shetland.

Schleiden (Matthias Jacob). Zu seinem 100. Geburtstage. *See Moebius (Martin).*

Semi-Darwinian. Doubts about Darwinism by a. See Morrison (Charles).

Sim (George). The Vertebrate Fauna of "Dee." The Ichthyological portion includes the Fishes of the East Coast from Wick to Firth of Forth. Pp. 295. Svo. Aberdeen, 1903. Author.

Spolia Zeylanica. Issued by the Colombo Museum, Ceylon. Vols. I- Svo. Colombo, 1903-

Stockholm.

Kongliga Svenska Vetenskaps-Akademie.

Author.

Strassburg.

Pharmazeutisches Institute der Universität.

van Henrick (Henri). Sce Heurck (Henri van).

Washington.

Carnegie Institution.

Smithsonian Institution.

Weber van Bosse (Mrs. A.) and Foslie (M. H.). The Corallinaceae of the Siboga-Expedition. Siboga-Expeditie. Monogr. 61.

York, Eastleigh, and Birmingham.

Watson Botanical Exchange Club.

DONATIONS IN AID OF PUBLICATIONS.

1903.

1904.

INDEX TO THE PROCEEDINGS.

SESSION 1903-1904.

Note.—The following are not indexed:—The name of the Chairman at each meeting; speakers whose remarks are not reported; and passing allusions.

Aberdeen, Stone-Crab from (Bullen), 6.
Accounts, Annual, 14.
Additions to Library, 43.
Address, Presidential, 17-30.
Africa, West, Palms from (De Man), 8.
Albino Mole (Bullen), 3.
Australian flowers, shown (Badams), 7.
Badams, L. T., West Australian flowers, 7.
Bagshot, albino Mole from (Bullen), 3.
Baker, E. G., Auditor, 12.
Baker, R. T., admitted, 39.
Balfour, Prof. I. B., gift of Balfour Medal, 10.
Balfour, Prof. J. H., medal struck in memory, 10.
Ballot for Council and Officers, 15-16; for Councillor, 4.
Bateson, W., variation in Primula sinensis, 7.
Beans, bicarpellate (Drabble), 5.
Benson, M., & E. Sanday, on Carpinus, 3.
Bentley, B. H., admitted, 1; pollination of flowers, 2.
Bicarpellate Beans (Drabble), 5.
Biscayan Plankton, I. (Fowler), II. (Stebbing), III. Chetognatha (Fowler), 39.
Black-Currant mite shown (Walker), 9.
Blackman, V. H. (comm. Rathbone), 4; elected Councillor, 17; Scrutineer, 4.
Blaze-currents (Waller), 40.
Bonhote, J. L., admitted, 10; elected, 8.
Buddle, L. A., leaves of Bracken, 2; secondary wood in Psilotum, 8.
Botanic Illustration (Jackson), 9.
Botany, place of Linnaeus in its history (Olsson Seffer), 40.
Bracken, structure of leaves (Buddle), 2.
Brenes, Mantis eggs at (Bullen), 9.
British Freshwater Rhizopoda (Cash), 40; — Preglacial fruits and seeds, 12.
Broad, A., rudimentary horns of horse, shown, 1.
Bullace, seeds from Silchester (Reid), 12.
Bullen, Rev. A. B., albino Mole, 3; Auditor, 12; cat with snake, 9; egg-capsule of Mantis, 9; Northern Stone-crab, 6; retired from Council, 16.
Bye-Laws, as to election of Associates, 9; resolution concerning, 38, 39.
Calculi from Horse (Popham), 40, 42.
Cancer (Farmer), 5.
Capc Polycheta (Willey), 4.
Cardamine pratensis, gall on flower-bud (Walker), 39; viviparous (Walker), 39.
Carices, Malayan (Clarke), 8.
Carpinus Betulus (Benson & Sanday), 3.

Carruthers, W., on portraits of Lin- neaus, 39; Scrutineer, 16; vote of thanks to President, 16; vote of thanks to Treasurer, 13.

Cash Collection of Coal-Measure plants, mentioned, 2.

Cash, J., British Freshwater Rhizo- poda, 40; paper postponed, 12.

Casuarina equisetifolia, food-plant of Clania (Stebbing), 10.

Cat and Snake (Bullen), 9.

Cavers, F., elected, 4.

Chatognatha, Biscayan (Fowler), 39.

Charter, Supplemental, read, 13.

Cheeseman, W. N., elected, 3.

Chichester, C. R., withdrawn, 15.

Christy, T., enquiry as to new Bye- Laws, 38; on calculi in horses at Shanghai, 40.

Cladoceira, Biscayan (Stebbing), 5.

Clania Craneri (Stebbing), 10.

Clarke, C. B., Auditor, 12; on Malayans Corices, 8.

Clitheroe, W., admitted, 4; elected, 3.

Coal-measures, mycorhiza from (Weiss), 2.

Coilodesme californica (Rathbone), 4.

Collins, E. J., admitted, 4; elected, 3.

Confirmation of Minutes opposed, 9; passed, 11.

Coriander seeds from Silchester (Reid), 2.

Cosman, J. S., sketch of Dawson Turner, 10.

Colonacaster Pyracantha (Reid), 12.

Council elected, 15-16; resolution con- cerning Bye-Laws, 38, 39.

Councillor elected, 4.

Crisp, F., elected Treasurer, 16; gift of Supplemental Charter, 13; on Bye- Laws governing the election of Asso- ciates, 9; Vice-President, 38.

Crotch, W. D., death announced, 13.

Cypresina macrocarpa, gnaur on root, 9.

Currant-nutes (Walker), 9.

Damson-stones from Silchester (Reid), 12.

Dandelion, abnormal root (Drabble), 40.

Davey, F. H., elected, 3.

De Man, J. G., on Palemon, 8.

Deaths announced, 13.

Dennis, J. M., withdrawn, 15.

Dennis, W., admitted, 1.

Derbyshire, biecarpellate beans from, 6.

Discussion on new Bye-Laws, enquiry as to, 38.

Dobson, Rev. J., fascinated rose, 3.

Docoglossa (Fleure), 5.

Donations, 68.

Drabble, Dr. E., abnormal root of Dandelion, 40; biecarpellate beans, 5; roots of Palms, 4.

Druce, H., Auditor, 12.

Duthie, J. F., vote of thanks to Presi- dent, 66.

Embryology of Carpinus (Benson & Sanday), 3.

Enock, F., natural colour photography, 10.

Epilobium collinum, from Scotland (Salmon), 6.

Eriophyes ribis shown (Walker), 9.

Erysiphaceae, specialization of para- sitism (Salmon), 7.

Eustace, Dr., frontal bones of Horse with rudimentary horns, 2.

Evans, Major G. H., elected, 39.

Farmer, J. B., comm. (Wallar), 40; on cancer, 5.

Fasciated Rose shown (Gerard), 3.

Fawcett, W., & A. B. Rendle, Jamaican species of Lepanthes, 40.

Fitzjohn, Miss, spider sent by, 5.

Fleure, H. J., on Docoglossi, 5.

Fluids in plant-stems (Anderson), 39.

Foggitt, W., elected, 3.

Foreign Members elected, 13; deaths reported, 13.

Foulkes, Rev. T., death announced, 15.

Fowler, Dr. G. H., admitted, 12; Biscayan Chatognatha, 39; elected, 8.

Fowler, Rev. Canon, Scrutineer, 16.

Francis, W., obituary, 31.

Freshwater Rhizopoda (Cash), 40.

Fries, Prof. T. M., presentation of Limnean portraits, 39.

Frontal bones of Horse with rudimen- tary horns, 1.

Fruits and seeds, fossil (Reid), 12.

Fry, Sir Edward, opinion as to Bye- Laws, 11; thanks voted to, 11.

Fungus causing gnaur (Percival), 5.

Fyson, P. F., elected, 12; admitted, 13.

Gall on Cardamine (Waller), 39.

Galton, J. C., death announced, 13.

Gatty, Dr. C. H., death announced, 15 obituary, 32.
INDEX.

Gegenbaur, C., death announced, 15; obituary, 32.
Gerard, Rev. J., fasciated rose, 3.
Gilchrist, J. D. F., elected, 10.
Gnau on Capressus, 5.
Green, Prof. J. R., retired from Council, 16.
Groom, Prof. P., vote of thanks to President, 16.
Groves, H., Scrutineer, 16.
Günther, Dr. A., elected Councillor, 16; Linnean Medal presented, 16, 30; Vice-President, 38.

Hair on neck of the Horse (Kid1), 40.
Hall, E. B., admitted, 6; elected, 5.
Haller, letter from Linnaeus, 12; printed, 41.
Hamilton, Dr. E., death announced, 13; obituary, 33.
Hansen, A., on vivipary, mentioned, 39.
Harting, J. E., withdrawn, 15.
Hemsley, W. B., Primula vulgaris, 12.
Hertsman, Prof. W. A. comm., (Fleure), 5; elected Councillor, 16; President, 16.

Heridity in Primula sinensis (Bateson), 7.
Hill, M., elected, 3.
Hindmarsh, W. T., photographs of growing plants, 39.

History of Botany, Linnaeus’s place in (Olsson Seffer), 40.
Holc, R. S., elected, 12.
Hooker, Sir J. D., Impatiens in Walliehian Collection, 39; portrait of Dawson Turner, presented, 6.
Hopkinson, J., comm. (Cash), 40; vote of thanks to President, 11, 16.
Hornell, J., elected, 8.
Horns, rudimentary, 1.

Horse, arrangement of the hair on neck (Kidd), 40; calenli from (Popkam), 40, 42; rudimentary horns, 1.
Howes, Prof. G. B., Sec. resigned, 4.
Hybrids, wheat, and Mendel’s Laws (Biffen), 7.
Hyodontidae, skulls (Ridewood), 13.

Illustration, botanic (Jackson), 9.
Impatiens in Walliehian Collection (Hooker), 39.
India, Monophlebinae (Stebbing), 2.
Interglacial fruits and seeds (Reid), 12.
Jackson, B. Dayson, Botanic Illustration from the 15th to 20th Centuries, 9; comm. (Olsson Seffer), 40; List of Genera, by T. von Post shown, 4; on portraits of Linnaeus, 39; on Post Office rooms, 12.

Jamaica, Lepanthes from (Fawcett & Rendle), 40.
Jerusalem, Spider from, 5.
Jones, C. E., stem of Lycopodium, 10.

Kellock, Dr. W. B., death announced, 13.
Kidd, Dr. W., arrangement of Hair on the neck of the Horse, 40.
Krause, F. M., withdrawn, 15.
Kuntze, O., his ideas on nomenclature mentioned, 4.

Le Brocq, W. P. J., admitted, 12; elected, 10.
Leaves of Bracken (Boodle), 2.
Lepanthes, species in Jamaica (Fawcett & Rendle), 40.
Librarian’s Report, 15.
Library, Additions, 43.
Linnaeus, C., his place in the history of Botany (Olsson Seffer), 40; letter shown (Middleton), 12; printed, 41, 42; portraits presented (Fries), 39.
Linnean Medal presented, 16, 30.
Linnean MSS, access to, mentioned, 39.
Lithodes mara, shown (Bullen), 6.
Lycopodium, stem (Jones), 10.

Maclean, N., admitted, 4.
Madras, Claudia from (Stebbing), 10.
Maidstone, Current-mites near (Walker), 9.
Malaya, Corynia (Clarke), 8.
Malta, fasciated rose from (Gerard), 3.
Mantis religiosa, egg-cases (Bullen), 9.
Mason, P. B., death announced, 13; obituary, 34.
Massee, G., retired from Council, 16.
Masters, M. T., on fasciated rose, 3; on Pius, 3.
Medal, Linnean, presented, 16, 30.
Mendel’s Laws (Biffen), 7.
Michael, A. D., on albino Mole, 3.
Middleton, R. M., letter from Linnaeus to Haller, 12; printed, 41–42; on vote of thanks to the President, 11.
Milner, H. E., withdrawn, 15.
Minutes, confirmation opposed, 9; subsequently carried, 11.
Mole, albino (Bullen), 3.
Monekton, H. W., Scrutineer, 4.
Monophlebus, new (Stebbing), 2.
Moore, J. E. S., elected, 3.
Mormyriidae, skulls (Ridewood), 13.
Mycorrhiza from Coal-measures (Weiss), 2.
Myriactis Areschonigii (Rathbone), 4.

Najas graminea (Reid), 12.
—— minor (Reid), 12.
New Guinea, *Palemon* from (De Man), 8.
Notopteridce, skulls (Ridewood), 13.

Obituaries, 31-38.
Office of Works, H.M., re Post-Office rooms, 12.
Officers elected, 16.
Olive, egg-cases of *Mantis* on (Bullen), 9.
Olson Seffer, P., Place of Linnaeus in history of Botany, 40.
Ough, L., withdrawn, 15.

Palemon (De Man), 8.
Palms, roots (Drabble), 4.
Parasitism, specialization in *Erysi-
phaceae* (Salmon), 7.
Parsons, F. G., comm. (Kidd), 40; elected Councillor, 16.
Pearson, C. E., admitted, 12; elected, 10.
Fenney, W., death announced, 15; obituary, 35.
Perceval, Prof. J., on gnauus in *Pinus*, 5.
Phaeolus vulgaris, biecarpellate, 6.
Photographs of growing plants, shown, 39.
Photography, in natural colours (Enock), 10.
Phyllody of the calyx of Primrose, 12.
Pien (Masters), 7.
Plankton, Biscayan (Fowler), 6, 39.
Plant-stems, flow of fluids in (Anderson), 39.
Pollination of flowers (Bentley), 2.
Polycheta from the Cape (Wille), 4.
Popham, R. B.,CALculi from Horse, 40; abstract, 42.
Portraits of Linnaeus presented (Fries), 39.
Post-Office rooms, succession to, 12.
Post, Tom von, ‘Genera’ shown, 4.
Powell, L., death announced, 13.
Preglacial fruits and seeds (Reid), 12.
President, elected, 16.
Presidential Address, 17-30.
Privanu deorum, Velen., photograph shown (Hindmarsh), 39.
—— sinesis, variation (Bateson), 7.
—— vulgaris, phyllody of the calyx, 12.
Psilotum trigetrion, secondary wood in (Boodle), 8.
Pteris aquilina leaves (Boodle), 2.
Rainfall, probable cause of vivipary, 39.
Rathbone, M., on *Myriacites*, etc., 4.
Reid, C., drawings of fossil and semi-
fossil fruits, 12.
Rendle, A. B., see Fawcett, W., & A. B. Rendle.
Repeal of present Bye-Laws, resolution
on, 38, 39.

Report, Librarian’s, 15.
——, Secretaries’, 13.
Rhizopoda, Freshwater (Cash), 40.
Rhodothamnus Chamaecistus, photograph shown (Hindmarsh), 39.
Rhynchosia calycina, Guill. & Perr., from Sierra Leone (Smith), 40.
Ridewood, Dr. W. G., comm. (Wille), 4; rudimentary horns in the horse, 1; skulls of Mornmyridae, 13.
Roman plants (Reid), 12.
Root of Dandelion (Drabble), 40.
Roots of Palms (Drabble), 4.
Rose, fascinated (Gerard), 3.

Saccaromyces cerevisiae (Vines), 7.
Salmon, E. S., Parasitism of *Erysi-
phaceae*, 7.
Sanday, E., see Benson, M., & E. Sanday, 7.
Sanger-Shepherd three-colour process, 10.
Scotland, *Epilobium collinum* from (Salmon), 7.
Scott, Dr. D. H., collection of Coal-
measure plants, mentioned, 2; elected Secretary, 16.
Scrutineers appointed, 16; — Special General Meeting, 4.
Secondary wood in *Psilotum* (Boodle), 8.
Secretaries elected, 16.
Secretaries’ report, 13.
Secretary, Rev. T. R. R. Stebbing elected, 4.
Seeds and fruits, fossil, etc. (Reid), 12.
Sendall, Sir W. J., death announced, 13; obituary, 35.
Seward, A. C., Vice-President, 38.
Shanghai, calcui in horses at (Christy), 40; *Palemon* from (De Man), 8.
Shelford, R. W. G., elected, 3.
Shortia uniflora, Maxim., photograph shown (Hindmarsh), 39.
—— galacifolia, Torr. & Gray, men-
tioned, 39.
Sierra Leone, *Rhynchosia calycina* from (Smith), 40.
Silchester, plants from (Reid), 12.
Skulls of Mornymridae (Ridewood), 13.
Smart, F. G., gnauus on *Cupressus*, 5.
Smith, Canon F. C., *Rhynchosia cal-
cina* from Sierra Leone, 40.
Snake and Cat (Bullen), 9.
Special General Meeting, 4.
Specialization of Parasitism in Erysi-
phaceae (Salmon), 7.
Spider from Palestine, 5.
Sprague, T. A., admitted, 3; elected, 1.
Spufford, Rev. H. T., admitted, 10; elected, 8.
Staff, Dr. O., elected Councillor, 16; Primula vulgaris showing phyllody of the calyx, 12.
Stebbing, E. P., admitted, 5; elected, 8.
Stebbing, Dr. O., elected Councillor, 16; Primula vulgaris showing phyllody, 12.
Stebbing, Rev. T. R. R., Amphipoda and Cladocera, 6; comm., (De Man) 8, (Fowler) 6; elected Councillor and Secretary, 4; elected Secretary, 16; gnat shown, 5.
Stems of plants, flow of fluids in (Anderson), 39.
Stewart, S. A., elected Associate, 7.
Stone-crab shown (Bullen), 6.
Sussex, semi-fossil plants (Reid), 12.
Swinhoe, Col. C., retired from Council, 16.
Tahiti, Palammon from (De Man), 8.
Tansley, A. G., Scrutineer, 4.
Taraxacum officinale, Weber, abnormal root (Drabble), 40.
Tegenaria from Jerusalem, 5.
Thompson, I. C., death announced, 13; obituary, 36.
Thorne, A., death announced, 13.
Tropa natans (Reid), 12.
Treasurer, accounts, 13; elected, 16; Gift of Supplemental Charter, 13.
Treasury, H.M., on Post-Office rooms, 12.
Turner, Dawson, portrait presented (Hooker), 10.
Variation in Primula sinensis (Bateson), 7.
Vedalia predaceous on Monophlebus (Stebbing), 2.
Vegetable tissues, blaze-currents in (Waller), 40.
Vice-Presidents appointed, 38.
Vine, seeds from Silchester (Reid), 12.
Vines, Prof. S. H., comm., (Bateson) 7, (Biffen) 7; Correspondence with Sir Edward Fry, 10-11; Physiology of the Yeast-plant, 7; Vice-President, 38; vote of thanks on quitting office, 16.
Viviparous Cardamine (Walker), 39.
Walker, A. O., Cardamine viviparous, 39; gall on Cardamine, 39; currant-mites shown, 9; retired from Council, 16.
Walker, C. E., elected, 5.
Waller, Dr. A. D., Blaze-currents of Vegetable Tissues, 40.
Wallichian Collection, Impatiens in (Hooker), 39.
Ward, C., death announced, 13.
Watson, W., declared elected an Associate, 8.
Weiss, F. E., Mycorhiza from Coal-measures, 2.
Wheat-hybrids and Mendel's Laws (Biffen), 7.
Witley, A., Polychaeta from the Cape, 4.
Wood, secondary, in Psilotum (Boodle), 8.
Woronin, M., death announced, 15; obituary, 37.
Yeast-plant, its physiology (Vines), 7.
FRANK CRISP, Esq.
J.P., LL.B., B.A.Lond.
Treasurer, 1881—1905.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frontispiece</td>
<td></td>
</tr>
<tr>
<td>List of Publications issued</td>
<td>iv</td>
</tr>
<tr>
<td>Proceedings of the 117th Session</td>
<td>1</td>
</tr>
<tr>
<td>President's Address</td>
<td>18</td>
</tr>
<tr>
<td>Obituaries</td>
<td>32</td>
</tr>
<tr>
<td>Abstracts of Papers</td>
<td>59</td>
</tr>
<tr>
<td>Additions to the Library</td>
<td>65</td>
</tr>
<tr>
<td>Donation</td>
<td>88</td>
</tr>
<tr>
<td>Index</td>
<td>89</td>
</tr>
</tbody>
</table>
Publications of the Society issued during the period, 31st July, 1904, to 31st July, 1905:

Journal (Botany), No. 257, 1st Nov., 1904.
,, 258, 1st July, 1905.
,, (Zoology), No. 190, 1st Nov., 1904.
,, 191, 1st April, 1905.
,, 192, 14th July, 1905.

,, xi., Mar. 1905.
,, VII. ,, i., Dec. 1904.
,, ii., Mar. 1905.
,, ix., Dec. 1904.
,, x., July 1905.
,, ii., Nov. 1904.
,, iii., Jan. 1905.

List of [Fellows, Associates, and Foreign Members], 1904-1905.
November 3rd, 1904.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 16th June were read and confirmed.

The President, in greeting the Fellows on the opening of the Session, alluded to the welcome addition to the Society's rooms, by the acquisition of the quarters formerly occupied by the Post Office, and the consequent changes in the Library and Council Room.

Mr. Allan Octavian Hume, C.B., was admitted a Fellow.
Mr. Percy Appleyard, F.C.S., Mr. Richard Hind Cambage, Mr. Thomas Bennett Goodall, and Mr. Richard Norris Wolfenden, M.D. Cantab., were proposed as Fellows.

The Resolution of Council of the 2nd June, "That the existing Bye-Laws of the Society be, and they are hereby, repealed, and that the following Bye-Laws be established in lieu thereof," was then introduced; the President explaining that under the Charters it was incumbent on the Council to present all new or changed Bye-Laws to the Vote of the Fellows by ballot, after being twice read from the Chair: consequently no modification could take
effect unless it passed through the stages indicated; further, that the Council had received certain suggestions which had been carefully considered but thought not essential to the proper working of the proposed Bye-Laws, even though some were verbal improvements; the Council had, in the new Bye-Laws, made as few changes as possible, preserving the original text as far as practicable. He took the feeling of the Meeting to be that the Bye-Laws should be voted upon, as a whole, and on that basis the ballot would be taken. The result was, in favour 72, against 4; whereupon the President declared the new Bye-Laws to be confirmed by a large majority.

Mr. G. Claridge Druce, F.L.S., showed specimens of a new British Grass, Koeleria valesiacca, Gaud., which he had found in the Herbarium of Dillenius at Oxford, and recently refound in the original locality at Brean Down, Somersetshire, which was originally given as "Brent" Down. Dr. Stapf and Mr. Henry Groves contributed some remarks.

The Rev. John Gerard, S.J., F.L.S., brought specimens of a proliferous Plantain (Plantago major) from the neighbourhood of Clitheroe, Lancashire. He drew attention to the figures of the plant in Lobel and Penn's 'Adversaria' and Dodoen's 'Pemptades,' which latter block reappeared in Lobel's 'Observations' and 'Icones,' and Johnson's edition of Gerard's 'Herbal' in 1633; the old herbalists spoke of it as the "Besome plantain with spoky tufts." He also drew attention to later figures, in Masters's 'Teratology' and the 'Gardeners' Chronicle,' ser. II. xiii. (1880) p. 364, figs. 65, 66. The point of interest seemed to be that this proliferous tendency was transmitted by seed, for a seedling of the original plant was also shown. A discussion followed in which Mr. G. C. Druce, Mr. E. M. Holmes, Mr. J. Britten, and Prof. H. Marshall Ward engaged, the last remarking that the plant in question offered specially good material for experiments as to mutation.

Mr. Frank Crisp, Treas.L.S., brought for exhibition a flower of Schubertia graveolens, Lindl., an Asclepiad, which, deprived of its corolla and a portion of its calyx cut away, viewed from the side, presented the genitalia in the shape of a skull. Prof. E. B. Poulton briefly commented on this exhibition, as an illustration of mimetic resemblance, paralleled by certain Lepidopterous markings.

The following papers were read:—

1. "A Note on some Points in the Structure of the Gill of the Ceylon Pearl-Oyster." By the President.

3. "On Bryozoa from near Cape Horn." By A. W. Waters, F.L.S.

November 17th, 1904.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 3rd November were read and confirmed.

Mr. John Edmund Shoree Moore, and Mr. Henry Deane of Sydney, New South Wales, were admitted Fellows.

Her Grace Mary du Carroy Russell, Duchess of Bedford, Miss Margaret Benson, D.Sc. Lond., Mr. Stafford Edwin Chandler, B.Sc., Mrs. Catherine Crisp, Miss Alice Laura Embleton, B.Sc., Mrs. Marian Sarah Ogilvie Farquharson, F.R.M.S., of Haughton, Mrs. Grace Coleridge Frankland, F.R.M.S., Mrs. Maria Matilda Ogilvie Gordon, Ph.D. Munich, D.Sc. Lond., Miss Gulielma Lister, Miss Ethel Sargent, Mr. Arthur Everett Shipley, M.A., F.R.S., Miss Sarah Marianne Silver, Mrs. Constance Percy Sladen, Miss Annie Lorrain Smith, Mrs. Mary Anne Stebbing, Miss Emma Louisa Turner, Mr. William James Tutcher, Mrs. Lilian Jane Veley, and Miss Ellen Ann Willmott, were proposed as Fellows.

Mr. H. E. H. Smedley, F.L.S., F.G.S., exhibited forty-one Models of Palaeozoic Seeds and Cones, including those of the following:—Paleostachya, Calamostachys, Cingularia, Cheirostrobus, Sigillariostrobus, Spencerites, Bennettites, Lagenostoma, and others. The models of the seeds show the complexity of their internal structure, whilst those of the synthetically re-constructed Calamitean and other cones display the high organization of the vascular Cryptogams of Palaeozoic times.

A discussion followed in which Dr. D. H. Scott, Professor J. B. Farmer, and the President took part.

The following papers were read:—

1. "Note on the Shape of the Stems of Plants." By the Rt. Hon. Lord Avebury, F.R.S., F.L.S.

2. "Observations on some undescribed or little-known Species of Hemiptera-Homoptera of the Family Membracidae." By G. Bowdler Buckton, F.R.S., F.L.S.
Proceedings of the

December 1st, 1904.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 17th November were read and confirmed.

Mr. Eardley Wilmot Blomfield Holt and Miss Emilia Frances Noel were proposed as Fellows.

Mr. Percy Appleyard, F.C.S., Mr. Richard Hind Cambage, Mr. Thomas Bennett Goodall, and Mr. Richard Norris Wolfenden, M.D. Cantab., were severally balloted for and elected.

The Meeting having been made Special in pursuance of notice sent to all Fellows in the United Kingdom, the President opened the Ballot for five additional Members of Council, in accordance with the provisions of the Supplemental Charter. The Ballot being closed, the President nominated Mr. Herbert Druce, Mr. Henry Groves, and Mr. A. O. Walker, Scrutineers; and the votes having been examined and reported to the President, he announced that Mr. Richard Assheton, M.A., Rev. Canon W. W. Fowler, M.A., Mr. H. W. Monckton, F.G.S., Prof. F. W. Oliver, D.Sc., and Dr. A. B. Rendle, M.A., had been elected Members of the Council.

Mr. John Clayton, F.L.S., presented a series of photographs with lithographed text, entitled "The Sequoias, with special reference to the section of the Big-Tree 'Mark Twain,'" which tree afforded the sections in the Jesup Collection in New York, and at the British Museum (Natural History); the history and details of these were given. A discussion followed, Mr. H. J. Elwes, Rev. T. R. R. Stebbing, and Mr. H. W. Monckton taking part.

Prof. S. H. Vines, F.R.S., V.P.L.S., then gave a discourse on "Proteid Digestion in Animals and Plants." (See Abstract on p. 59.)

December 15th, 1904.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 1st December were read and confirmed.

Mr. T. B. Goodall, Mr. C. E. Walker, and Dr. R. N. Wolfenden were admitted Fellows.

Miss Lilian Suzette Gibbs, Mrs. Henderina Victoria Scott, Mr. Charles Blades Coverdale Storey, and Prof. Richard Henry Yapp were proposed as Fellows.
Her Grace Mary du Caurroy Russell, Duchess of Bedford, Miss Margaret Benson, D.Sc., Mr. Stafford Edwin Chandler, B.Sc., Mrs. Catherine Crisp, Miss Alice Laura Emlenton, B.Sc., Mrs. Grace Coleridge Frankland, F.R.M.S., Mrs. Maria Matilda Ogilvie Gordon, Ph.D. Munich, D.Sc., Miss Gulielma Lister, Miss Ethel Sargent, Mr. Arthur Everett Shipley, M.A., F.R.S., Miss Sarah Marianne Silver, Mrs. Constance Percy Sladen, Miss Annie Lorrain Smith, Mrs. Mary Anne Stebbing, Miss Emma Louisa Turner, Mr. William James Tutcher, Mrs. Lilian Jane Veley, and Miss Ellen Ann Willmott, were severally balloted for and elected.

Mr. W. G. Freeman, F.L.S., exhibited the fresh fruit of Sechium edule, Sw., from the West Indies, and remarked upon its precocious germination. Mr. H. J. Elwes and Mr. C. B. Clarke contributed some further remarks.

Mr. Thomas Christy, F.L.S., brought two samples for exhibition of the so-called "Root" or "Grass" rubber from the French Congo, believed to be derived from Landolphia Tholloni, Dewèvre; Mr. E. M. Holmes added a few observations.

The following papers were read:—

2. "Experimental Studies on Heredity in Rabbits." By Charles Chamberlain Hurst, F.L.S.

January 19th, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 15th December were read and confirmed.

Mrs. Catherine Crisp, Mrs. Constance Percy Sladen, Miss Ellen Ann Willmott, Miss Emma Louisa Turner, Mrs. Mary Anne Stebbing, Miss Sarah Marianne Silver, Mrs. Lilian Jane Veley, Miss Margaret Benson, Miss Annie Lorrain Smith, Miss Gulielma Lister, and Miss Ethel Sargent were admitted Fellows.

Mr. Thomas Vere Hodgson and Miss Viola Annette Latham, M.D., were proposed as Fellows.

Mr. Eardley Willmot Blomfield Holt and Miss Emilia Frances Noel were elected Fellows.

The Rev. T. R. R. Stebbing exhibited and explained specimens of Crustacea, in various ways remarkable for structure, habits,
habitat, or colouring, collected by Dr. Gilchrist, F.L.S. (South Africa), W. R. Forrest, Esq. (West Indies), Dr. Charles Hose, D.Sc. (Borneo), C. J. Saunders, Esq. (Singapore), P. W. Bassett-Smith, Esq., R.N. (Diego Garcia), W. Boyd, Esq., F.R.S.E., W. Bruce, Esq., E. Mello Saunders, Esq. (Northern and Arctic localities), and G. Eddison, Esq. (Nottinghamshire).

The specimens shown included many representative crabs, delicate or massive, some with tall sponges growing on their backs, some equipped for vigorous motion; a “calling-crab” with one arm abnormally large; an old truculent-looking land-crab; a new stone-crab from the South Atlantic; a West Indian “hermit” of exceptional size; a “mother-lobster” with its gastric apparatus inverted; several craw-fishes; the little red Cape lobster; cray-fishes; a new African river-prawn of a beautiful blue colour; the gigantic South American prawn, Palommon jamaicensis; Squillidae, Isopods, and Amphipods, with a thread-like Caprellid from Kerguelen among them. The series was intended to illustrate the wonderful diversity of forms developed in the Malacostraca, all traceable by modifications easily intelligible to a very simple original.

Various crustacean parasites of northern and southern whales were also exhibited, and a curious mimetic parasite from the sun-fish.

Lastly, Mr. Stebbing made an appeal for information in regard to the distribution of the river Crayfish in the Midland and Northern counties of England.

A discussion followed, in which the Rev. J. Gerard, S.J., Mr. H. J. Elwes, the Treasurer, the President, and Mr. V. I. Chamberlain took part, the Rev. T. R. R. Stebbing replying.

Dr. Augustine Henry then gave a discourse on “Botanical Collecting,” to which Prof. S. H. Vines, Mr. H. J. Elwes, and Dr. Tempest Anderson (a visitor) contributed some remarks. (See Abstract, p. 62.)

The following paper was read:—

February 2nd, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 19th January were read and confirmed.

Mr. Eardley Wilmot Blomfield Holt, Miss Emilia Frances Noel, Miss Alice Laura Embleton, Mr. William James Tutcher, and Mr. Stafford Edwin Chandler were admitted Fellows.
Miss Emily Mary Berridge, B.Sc. (Lond.), Mr. Frederick Hugh Capron, B.A. (Oxon.), Miss Helen Charlotte Isabella Fraser, B.Sc. (Lond.), and Miss Dorothea Frances Matilda Pertz were proposed as Fellows.

Miss Lilian Suzette Gibbs, Mrs. Henderina Victoria Scott, Mr. Charles Blades Coverdale Storey, and Prof. Richard Henry Yapp, M.A. (Cantab.) were severally balloted for and elected Fellows.

The President having announced that the Council had approached Her Majesty the Queen, with the view of obtaining Her Majesty’s consent to become an Honorary Member under the provisions of the Supplemental Charter and New Bye-Laws, read the following letter from the Queen’s Private Secretary, all the Fellows present upstanding in their places:

Buckingham Palace,
27th Jan., 1905.

SIR,

I have had the honour of submitting your letter and Reports to the Queen. I am commanded to inform you that Her Majesty will be pleased to comply with your request to become an Honorary Member of the Linnean Society.

I am, Sir,

Your obedient Servant,

B. Daydon Jackson, Esq.,
Gen. Secretary.

(Signed) Sidney Greville.

The President then read the letter which he proposed to send in consequence of the foregoing:

Linnean Society,
Burlington House, London, W.
3rd February, 1905.

To the Queen’s Most Excellent Majesty.

Madam,

I have the honour to state that the gracious expression of Your Majesty’s wish to become an Honorary Member of this Society was duly communicated to the General Meeting of the Linnean Society of London held yesterday at Burlington House, and was received with acclamation, the Fellows all upstanding in their places.

The Roll of the Society will be submitted for signature at Your Majesty’s pleasure.

I remain, Madam, with the deepest respect,

Your Majesty’s most dutiful and most obedient Servant,

(Signed) William A. Herdman,
President,
Linnean Society of London.
The following papers were read:—

1. "Descriptions of New Chinese Plants." By William James Tutcher, F.L.S.
2. "Revision of the European Marine Forms of the Cirolaninae, a Subfamily of Crustacea Isopoda." By Dr. H. J. Hansen, F.M.L.S.

February 16th, 1905.

Prof. S. H. Vines, F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 2nd February were read and confirmed.

Mrs. Henderina Victoria Scott and Mr. Charles Blades Coverdale Storey were admitted.
Mr. Johannes Gossweiler and Miss Edith Rebecca Saunders were proposed as Fellows.
Mr. Thomas Vere Hodgson and Miss Viola Annette Latham, M.D., were severally balloted for and elected Fellows.

The Vice-President in the Chair then read the following letter from the Private Secretary of H.M. the Queen, in reply to the President's letter dated 3rd February:—

Buckingham Palace,
3rd Feb., 1905.

SIR,

I have had the honour of presenting your letter on behalf of the Linnean Society to the Queen.
I am commanded to express Her Majesty’s thanks.

I am, Sir,
Your obedient Servant,

W. A. Herdman, Esq. (Signed) Sidney Greville.

Four vacancies in the List of Foreign Members were announced from the Chair, due to the deaths of Dr. Michael Woronin, Dr. Rudolph Amandus Philippi, Prof. Eduard von Martens, and Dr. Bernard Renault.

A circular from the Société de Physique et d'Histoire Naturelle de Genève, announcing that the A. P. de Candolle prize of 500 francs will be awarded for the best unpublished monograph of a genus or order of plants, was also laid before the Society.
The following Resolution was put from the Chair, and adopted unanimously:—

"The Fellows of the Linnean Society in General Meeting assembled, February 16, 1905, express their profound sympathy with Mrs. Howes in her recent bereavement, their admiration for the distinguished career of her late husband, Professor Thomas George Bond Howes, F.R.S., and their gratitude for the long and energetic service which he rendered to the Society as its Zoological Secretary."

Miss E. Willmott, F.L.S., exhibited thirty water-colour drawings of Roses by Alfred Parsons, A.R.A., drawn at Great Warley, for her forthcoming volume on the genus Rosa, together with some chromo-lithographs of extreme excellence for the same volume.

Messrs. H. J. Elwes, J. G. Baker, and H. Groves raised a discussion on some points suggested by the drawings, to which Miss Willmott replied.

The following papers were read:—

March 2nd, 1905.

Prof. W. A. Herdman, F.R.S., President in the Chair.

The Minutes of the General Meeting of the 16th February were read and confirmed.

Mr. William Norwood Cheeseman was admitted a Fellow.
Marian, Lady Busk, Miss Lilian Jane Clarke, Miss Gabrielle Louise Caroline Matthaei, Mr. Reginald Innes Pocock, F.Z.S., and Mr. William Wise were proposed as Fellows.
Dr. Paul Friedrich August Ascherson, Berlin; Dr. Gottlieb Haberlandt, Graz; Prof. Ambrosius Arnold Willem Hubrecht, Utrecht; and M. Charles René Zeiller, Paris, were proposed as Foreign Members.
Miss Emily Mary Berridge, B.Sc., Mr. Frederick Hugh Capron, B.A., Miss Helen Charlotte Isabella Fraser, B.Sc., and Miss Dorothea Frances Matilda Pertz were severally balloted for and elected Fellows.

Mr. D. Finlayson, F.L.S., exhibited and explained the Ashe-Finlayson "Comparascope," for displaying two objects in the same
A magnified field, this being attained by a secondary stage and objective at right-angles to the primary instrument, the rays being transmitted up the body of the microscope through a right-angled prism, and clearness of the two images preserved by means of a diaphragm placed longitudinally in the microscope-tube.

A discussion followed in which Dr. W. G. Ridewood, Dr. D. H. Scott, Rev. T. R. R. Stebbing, and the President joined. Criticism was chiefly directed to the hybrid term for the invention, and "Synoptoscope" or "Synthetoscope" was suggested in its place.

The following papers were read:

2. "Biscayan Plankton.—Part IV. The Thaliacea." By Dr. George Herbert Fowler, F.L.S.

March 16th, 1905.

Prof. W. A. HERDAN, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 2nd March were read and confirmed.

Miss Emily Mary Berridge and Mr. Frederick Hugh Capron were admitted Fellows.
Mr. Arthur James Dicks, B.Sc.Lond., and Mrs. Maude Muff were proposed as Fellows.
Mr. Johannes Gossweiler and Miss Edith Rebecca Saunders were elected Fellows.

The President announced that the Council had appointed a Committee to consider the question of Zoological Nomenclature discussed at the last meeting; also, in view of the interest displayed at a previous meeting on the subject of OEcology, a discussion had been arranged for the 4th May, to be opened by Mr. A. G. Tansley.

Mrs. D. H. Scott, F.L.S., exhibited animated photographs of plants taken by the kammatograph, showing the natural movements of the plants accelerated so as to be readily followed by the eye.

The plates shown were:

1 & 2. Sparmannia africana, showing the opening of the flower-bud, the movements of the stamens, and the closing of the flowers at night.
3. Sensitive plant, Mimosa pudica, showing the movements of the leaves on stimulation.
4. *Fuchsia*, showing the opening of two buds into flower during 16 days, the bursting of the stamens and the growth of the style between them.

5. *Maurandia*, showing the circumnutation of the stem and two young petioles twining round a stick.

8. *Hippeastrum*: growth of stamens and style and development of the stigma.

A discussion followed, in which Dr. Scott, Rev. T. R. R. Stebbing, Mr. E. M. Holmes, Mr. J. Hopkinson, and the President took part, Mrs. Scott replying to the questions put.

Mr. Rupert Vallentin, F.L.S., showed a series of thirty lantern-slides, from photographs taken by himself, of bird-life in the Falkland Islands:—(1) The Kelp Goose, *Chloephaga antarctica*, with the dissimilar coloration of the two sexes, feeding on *Porphyra vulgaris*, a very abundant seaweed between tide-marks in those regions. (2) *Phalacrocorax magellanicus* and *P. imperialis* basking in the sun, and on their nests. (3) The Mollymawk, *Diomedea chlororhyncha*, which breeds on the outlying islands of the group. (4) The Penguins whose headquarters seem to be these islands, the Gentoo, *Pygoscelis taniata*, their nests being made on peaty soil, packed with twigs of *Empetrum nigrum* or *Poa coespitosa*, the Tussock Grass. (5) The Rockhopper Penguin, *Eudyptes chrysocome*, which assembles in the breeding-season by thousands in rookeries. Concerning this species, a series of rock-specimens were shown, some merely polished, others deeply grooved, as if by the claws of the Penguins when walking up the pathways to their rookery.

The President, the Rev. T. R. R. Stebbing, Mr. A. O. Walker, and Mr. A. D. Michael engaged in a discussion, and Mr. Vallentin replied.

The following paper was read:—

"Contributions to the Flora of Liberia." By Dr. Otto Stapf, F.L.S.

April 6th, 1905.

Mr. A. C. Seward, F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 16th March were read and confirmed.

Miss Helen Charlotte Isabella Fraser, Miss Dorothea Frances
Matilda Pertz, and Miss Edith Rebecca Saunders were admitted Fellows.

Mr. Edward Russell Burdon, B.A., Miss Kate Marion Hall, and Mr. Frederick William Lucas were proposed as Fellows.

Marian, Lady Busk, Miss Lilian Jane Clarke, Mr. Reginald Innes Pocock, F.Z.S., and Mr. William Wise were elected Fellows.

The Auditors for the Society's Financial Year ending 30th April were nominated, and elected by show of hands, as follows:—

For the Council, Mr. H. W. Monckton and Mr. G. S. Saunders; for the Fellows, Mr. H. Druce and Mr. H. Groves.

Mr. W. Botting Hemsley, F.R.S., F.L.S., exhibited a number of specimens and drawings of pitchers of *Nepenthes*, supplemented by slides, prepared by Mr. L. Farmar, to illustrate the various types of pitchers and their glandular systems. Glands are present on almost all parts of pitcher-plants, from the stems to the flowers, and they vary very much in structure, but there are only two classes, namely attractive and digestive. The former are generally distributed over the plant except the inside of the pitcher, where the digestive glands alone occur. The pitcher is an appendage of the leaf, borne on a prolongation of the midrib, which often acts as a tendril; it consists of a tubular or inflated body with two interior longitudinal ribs, which often develop into elegant fringed wings, and one posterior rib, which usually terminates in a spur, running out just below the hinge of the lid or operculum. The mouth of the pitcher is surrounded by a more or less elaborately constructed collar or peristome.

A new species, *Nepenthes Macfarlanei*, differs from all other known species, except *N. Lowii*, in the underside of the lip being thickly beset with stiff bristles, interspersed with honey-glands. The function of the bristles in this position is not obvious; but would seem to be preventative to flying insects, though ants might creep amongst them and drink the honey. The pitchers of *N. Macfarlanei*, as probably of all other species, are of two kinds, apart from those on the young seedlings. In some, perhaps only the intermediate ones, the whole of the inner surface is covered with digestive glands and the anterior ribs are not winged; in others, the upper part of the inner surface is perfectly smooth, forming what is termed the conductive zone to the glandular or retentive zone; the anterior ribs are developed into fringed wings, and the collar has an upward elongation where the lid is attached. The honey-glands on the underside of the lip are very prominent, oval or circular in outline, surrounded by a raised rim and from $\frac{1}{2}$ to $\frac{3}{10}$ of an inch in diameter. The digestive glands are gradually smaller from the base upwards, and vary from about 2000 to 5000 to the square inch. These glands are many-celled, ovoid or spherical in shape, and, in consequence of the unequal
growth of the tissues in which they are embedded, they are more or less over-arched, the opening of the arch looking downwards. The surface of the tissue is hard and polished, quite smooth to the finger moving in a downward direction, and rough to the finger, from the sharp edges of the arches, moving in an upward direction. *N. Loueri* has much larger, differently shaped pitchers, constricted in the middle, with sunken honey-glands on the lid as much as \(\frac{1}{15} \) inch in diameter and a very small pore-opening. The digestive glands in the lower part of the pitcher are pentagonal to heptagonal in shape, with a raised, hard rim all round. The collar is the simplest in the genus, but it has a prominent, single series of perithecid honey-glands near its inner margin.

N. Rajah, in a wild state at least, has sometimes a total length of leaf and pitcher of between five and six feet, with a very elaborate collar and a comb-like inner margin and solitary honey-glands, reached by a tunnel-like opening between the teeth; the largest pitchers have a capacity of two quarts. In *N. echiostoma* the collar consists of several series of combs, directed inwards and downwards, with a similar honey-gland in each tooth. *N. Edwardsiana* has a relatively narrow pitcher sometimes as much as two feet long, and the collar has thin transverse rings that are very distinctive. The collar of *N. echiostoma* is remarkable in having about four series of flattened spines, projecting inwards and downwards; each spine has an apical pore, the opening to a deeply seated honey-gland. In all other species the glands are between the teeth or spines. The digestive glands in the upper part of the retentive zone of this pitcher are very small, and number about 15,000 to the square inch. *N. Northiana* and *N. Veitchii* have remarkable broad turn-down, plaited, scoloped collars; *N. biculearata* is remarkable in having two very sharp spurs springing from near the hinge of the lid and projecting over the mouth of the pitcher; *N. celebica* has a horn-like appendage on the lid at a point opposite the hinge.

The complex arrangements favour the descent of insects and other creatures into the pitchers, and hinder almost all visitors from getting out again; once in, there is little hope of escape. A few hybrids were also shown, notably one named “Sir William Thiselton-Dyer,” which has produced the largest pitcher known in cultivation, being a pint and three-quarters in capacity.

The following papers were read:—

1. "On the Axillary Scales of certain Aquatic Monocotyledons.”
 By Prof. R. J. Harvey Gibson, F.L.S.

2. "A further Contribution to the Study of *Pelomyza palustris* (Greeff).”
 By Mrs. Lilian J. Veley, F.L.S.

3. "On Mansoniææ, a new Tribe of the Natural Order Sterculiaceæ.”
 By Lt.-Col. David Prain, I.M.S., F.R.S., F.L.S.
May 4th, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 6th April were read and confirmed.

The Rev. William Jenkins Webb Anderson, B.M., B.S., Patshan Hospital, Canton, and Mr. Hugh Fraser Macmillan, Curator of the Royal Botanic Gardens, Peradeniya, Ceylon, were proposed as Fellows.

Mr. Arthur James Dicks and Mrs. Maude Muff were elected Fellows.

Prof. Paul Friedrich August Ascherson, Prof. Gottlieb Haberlandt, Prof. Ambrosius Arnold Willem Hubrecht, and Prof. Charles René Zeiller were elected Foreign Members.

The following papers were read:—

2. "The Study of Vegetation: its present Condition and probable Development." By Prof. A. G. Tansley, F.L.S.

May 24th, 1905.

Anniversary Meeting.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 4th May were read and confirmed.

Mr. Reginald Innes Pocock, F.Z.S., Mrs. Maude Muff, Miss Lilian Jane Clarke, Mrs. Maria Matilda Ogilvie Gordon, D.Sc. Lond., Ph.D. Munich, Her Grace the Duchess of Bedford, Lady Busk, Mr. William Wise, and the Rev. William Moyle Rogers were admitted Fellows.

The Treasurer then laid his Annual Statement of Accounts before the Fellows, as shown on p. 15, and the President having spoken briefly, Mr. Henry Groves moved, and Prof. F. W. Oliver, F.R.S., seconded, "That the Treasurer's statement be adopted," which was carried.
<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investments on the 30th April, 1906.</td>
<td>£ 185.17</td>
</tr>
<tr>
<td>In hand in hand of April 1906.</td>
<td>£ 33.18</td>
</tr>
<tr>
<td>Investments of Compositions (including £1 and £2)</td>
<td>£ 35.15</td>
</tr>
<tr>
<td>Miscellaneous印刷 and Stationery</td>
<td>£ 9.10</td>
</tr>
<tr>
<td>Distribution</td>
<td>£ 8.18</td>
</tr>
<tr>
<td>Instructions</td>
<td>£ 6.78</td>
</tr>
<tr>
<td>Supplies</td>
<td>£ 6.18</td>
</tr>
<tr>
<td>In hand of April 1906</td>
<td>£ 1.45</td>
</tr>
<tr>
<td>Interest</td>
<td>£ 7.18</td>
</tr>
<tr>
<td>Loans</td>
<td>£ 185.17</td>
</tr>
<tr>
<td>Balance</td>
<td>£ 185.17</td>
</tr>
</tbody>
</table>

Reserves:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>£ 6.10</td>
</tr>
<tr>
<td>Balance of Bankers on 1st May, 1904</td>
<td>£ 185.17</td>
</tr>
</tbody>
</table>

Miscellaneous Reserve:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings and Conductance</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Journal</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Transactions</td>
<td>£ 3.12</td>
</tr>
</tbody>
</table>

Compositions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockholdings</td>
<td>£ 730.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>£ 6.10</td>
</tr>
<tr>
<td>Balance of Bankers on 1st May, 1904</td>
<td>£ 185.17</td>
</tr>
</tbody>
</table>

Miscellaneous Reserve:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings and Conductance</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Journal</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Transactions</td>
<td>£ 3.12</td>
</tr>
</tbody>
</table>

Compositions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockholdings</td>
<td>£ 730.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>£ 6.10</td>
</tr>
<tr>
<td>Balance of Bankers on 1st May, 1904</td>
<td>£ 185.17</td>
</tr>
</tbody>
</table>

Miscellaneous Reserve:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings and Conductance</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Journal</td>
<td>£ 3.12</td>
</tr>
<tr>
<td>Transactions</td>
<td>£ 3.12</td>
</tr>
</tbody>
</table>

Compositions:

<table>
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stockholdings</td>
<td>£ 730.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Annual Subscription</td>
<td>£ 9.00</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>£ 6.10</td>
</tr>
<tr>
<td>Balance of Bankers on 1st May, 1904</td>
<td>£ 185.17</td>
</tr>
</tbody>
</table>
Prof. S. H. Vines, F.R.S., in an appreciative review of the Treasurer's record, then moved the following Resolution:—

That the best thanks of the Society be given to Mr. Frank Crisp, the retiring Treasurer, for his valued services during nearly a quarter of a century, and his many munificent benefactions during his term of office, amongst which the gift of the cost of the Supplemental Charter is not the least.

Whilst regretting his retirement from the office he has so ably filled, the Society trusts that he may for many years continue to enjoy the leisure from official duties which he has so justly earned.

The General Secretary seconded the motion, remarking that the honour of doing so devolved upon him as being contemporaneously an officer during the whole of Mr. Crisp's Treasurership, and he found additional sources of gratification in that he had for two months before Mr. Crisp's election acted as Treasurer after the death of Mr. Frederick Currey, and in the fact that they had known each other from boyhood.

The President having added his appreciation, the motion was carried unanimously, the Fellows rising in their places.

The General Secretary read his report of deaths, withdrawals, and elections as follows.

Since the last Anniversary Meeting 19 Fellows have died, or their deaths been ascertained:—

Foreign Members (4).

The following 8 Fellows have resigned:—

And 43 Fellows (of whom 41 have qualified) and 4 Foreign Members have been elected.

The Librarian's report was read as follows:

During the past year 69 Volumes and 103 Pamphlets have been received as Donations from Private Individuals.

From the various Universities, Academies, and Scientific Societies 265 volumes and 127 detached parts have been received in exchange and otherwise, besides 68 volumes and 42 parts obtained by exchange and as Donations from the Editors and Proprietors of independent Periodicals.

The Council has sanctioned the purchase of 175 volumes and 108 parts of important works.

The total additions to the Library are therefore 577 volumes and 380 separate parts.

The number of Books bound during the year is as follows:

In half-morocco 325 volumes, in half-calf 9 volumes, in full cloth 184 volumes, in vellum 28 volumes, in buckram 36 volumes, in boards or half-cloth 21 volumes. Relabelled (half-morocco and cloth backs) 54 volumes. Total 657 volumes.

The General Secretary having read the Bye-Laws governing the Elections, the President opened the business of the day, and the Fellows present proceeded to vote for the Council. The Ballot for the Council having closed, the President appointed Dr. Braithwaite, Col. Beddome, and Mr. Wilfred Mark Webb, Scrutineers, and the numbers having been counted and reported to the President, he declared the result as follows:

Councillors retired:—Dr. A. C. L. G. Günther, F.R.S., Prof. F. G. Parsons, F.Z.S., Mr. G. S. Saunders, F.E.S., Mr. A. C. Seward, F.R.S., and Prof. S. H. Vines, F.R.S.; and the following were elected in their room:—Dr. Gilbert C. Bourne, Dr. Horace T. Brown, F.R.S., Mr. Clement Reid, F.R.S., Mr. David Sharp, F.R.S., and Dr. A. Smith Woodward, F.R.S.

The Ballot for the Officers having been closed, the President appointed the same Scrutineers; and the votes having been counted and reported to the President, he declared the result as follows:

President: Prof. W. A. Herdman, F.R.S.

Treasurer: Horace W. Monckton, F.G.S.

Secretaries

Dr. D. H. Scott, M.A., F.R.S.
Rev. T. R. R. Stebbing, M.A., F.R.S.
B. Daydon Jackson.

The President then delivered his Address, as follows:

LINN. SOC. PROCEEDINGS.—SESSION 1904-1905.
PRESIDENTIAL ADDRESS, 1905.

Fellows of the Linnean Society,—

It is my first duty—and like most duties when looked at from a common-sense point of view, it is also a great pleasure—to thank you for the honour you have done me and for the confidence you have shown in elevating me to this position. If I hesitated before accepting the nomination by Council it was not that I was in any way insensible to the honour proposed, but rather that I felt it to be beyond my deserts, and, amongst other reasons, because I doubted whether one whose chief work lay 200 miles away could efficiently discharge the duties you would naturally expect from your President. However, the kind assurances of prominent members of the Council overcame my doubts; and I will only add that there was some comfort in the thought that there is possibly one qualification which I was conscious of—namely, a strong desire to be of use and to advance in any way in my power the Linnean Society and the cause of Natural Science.

The Session during which, thanks to your kindness, I have been privileged to occupy this chair has been in several ways a memorable one. At the last Anniversary Meeting, my distinguished predecessor was able to announce in his Presidential Address that the Supplemental Charter of the Society had at last been granted, and he very properly alluded to the labour and expense which the Treasurer with characteristic generosity had borne single-handed—one only of many acts of thoughtful kindness on the part of Mr. Frank Crisp, from which the Society has benefitted. The loss which we sustain in the retirement of Mr. Crisp from the office of Treasurer, which he has held for nearly a quarter of a century, will be brought before the attention of the Society in a separate resolution.

In order to carry out the provisions of the Supplemental Charter it became necessary that the Bye-Laws of the Society should be revised, and one of the first duties I had to perform on taking office last June was to bring before your notice the draft revision carefully prepared by the Council of the previous session. The revised Bye-Laws were duly read from the Chair, as required by the Charter of 1802, at our meetings on June 2nd and June 16th, and were, I am happy to say, formally approved by the Fellows at our meeting on November 3rd, 1904.

These formalities completed, it became possible for us to bring about that great event in the history of our Society which has been predicted and commented on in more than one recent Presidential Address—the admission of Lady-Fellows. From that time forwards the Fellowship of the Linnean Society of London was open to worthy candidates without distinction of sex. The response to
this invitation has been most gratifying. No less than 26 duly qualified scientific women have been elected—a very notable accession to the Society.

In the past, although good scientific work by women, in both Botany and Zoology, has been brought on occasions before our meetings and has been printed in our publications, the Author was ever placed at a disadvantage; and if she appeared in person to read the paper, it was only possible as an act of grace and by special permission of the Council. Now our women workers can appear in their own right, they join us free from all disabilities, and they enjoy the privileges of fellowship and the duties of office on equal terms with men. Names of both men and women appeared for the first time in the list of candidates on November 17th, and in the ballot on December 15th, 1904, when 18 were elected.

I cannot but feel that in being privileged to receive the first Lady-Fellows I have, to some extent, reaped where I did not sow. It would have been more appropriate, had the necessary constitutional processes allowed, if my predecessor, Professor Vines, before relinquishing the Chair, had conducted in person the inauguration of the new order resulting from the changes brought about during his presidency. That, however, was impossible; but he enjoyed the distinction of presenting the first Lady-Fellow, and on January 19th, 1905, I had the pleasure of admitting to the Fellowship Mrs. Catherine Crisp, the wife of our Treasurer; Mrs. Mary Ann Stebbing, the wife of our Zoological Secretary; Mrs. Percy Sladen, the widow of a former Zoological Secretary; and such well-known scientific workers as Miss Margaret Benson, Miss Gulielma Lister, Miss Ethel Sargent, Miss Lorraine Smith, Miss Silver, Miss E. L. Turner, Mrs. Veley, and Miss E. Willmott—followed at subsequent meetings during the session by Mrs. H. V. Scott, wife of our Botanical Secretary; and others. To-day I have had the honour of admitting Her Grace the Duchess of Bedford, who was in the list of first Lady-Fellows elected on December 15th. Such additions can be nothing but a strength and an honour to our Society, and the Treasurer has signalized the historic occasion by a dinner to the new Fellows and by commissioning a picture of the scene at our meeting on January 19th, to be painted by Mr. James Sant, R.A., and presented to the Society for the permanent adornment of our library.

In all 44 new Fellows have been added to the roll this Session—a noteworthy increase as compared with 27 last Session and 22 the average for the last 10 years.

Chapter III. Sect. I. of our Bye-Laws provides that such Members of the Royal Family as may express a wish to belong to the Society become Honorary Members. It has been felt by the Council, as I am sure it will be also by all the Fellows of the Society, to be most appropriate, in the session when the first Lady-Fellows were admitted, that the attention of the Queen
should be directed to this provision in the Bye-Laws, and that Her Majesty should be humbly and dutifully requested to signify her wish to become an Honorary Member. The loyal and happy resolution to this effect was proposed at Council by Prof. Vines on January 19th, and on February 2nd I was enabled to read to the Society the reply intimating that the Queen had graciously acceded to our request.

We turn from the pleasant thought of these accessions to the inevitable losses which we have to regret—the death of 18 Ordinary Fellows and of 4 on the Foreign list, the latter being:—Dr. Rudolph A. Philippi, Prof. Eduard von Martens, M. Bernard Renaulit, and Prof. Alpheus S. Packard. The obituaries of our late Fellows have been prepared as usual by the Secretaries, and I do not propose to detain you by traversing the same ground; but there is one loss we have sustained which has a personal sadness for most of us and which I cannot pass over on this occasion. In deep sorrow we have to record the death, on February 4th, 1905, of our former Zoological Secretary, Prof. George Bond Howes. Last year Prof. Vines referred sympathetically to the resignation of office which our friend's continued serious illness had necessitated, and now we mourn the premature termination of a useful life and a distinguished career. Prof. Howes's numerous solid contributions to science will be duly recorded in our 'Proceedings.' Tributes to his influence as a teacher and his helpfulness as a colleague have already been published or will shortly appear. We knew him best here as an indefatigable councillor and office-bearer and a true friend of all honest workers. Many young scientific men owe their professional position and advancement in large measure to support and advice from Howes. He had correspondents in all parts of the country whom he helped with information and literature. He had an unusually wide range of knowledge and a marvellously detailed acquaintance with the publications of Zoology; and all that he knew was ever placed freely at the disposal not only of his students and friends, but also of other workers on the subject whom in some cases he had never even met. I do not think it is too much to say that he wore himself out working for others.

We all appreciated highly his scientific work and admired his fine character; those of us who were privileged to know him more intimately loved him as a friend of a singularly sympathetic, unselfish and loyal nature. This Society at the meeting on February 16th passed a resolution of deep regret, sympathy and gratitude for devoted service; and I am now able to announce to you that steps have been taken by the Officers of this Society and of the Zoological Society and a few other former colleagues to establish a Howes Memorial Fund. A committee is now being formed, and a circular letter will shortly be issued to the Fellows of the Society.
The vacant places in our list of Foreign Members have been filled by the election of Dr. Paul Friedrich August Ascherson, of Berlin; Dr. Gottlieb Haberlandt, of Graz; Prof. Ambrosius Arnold Willem Hubrecht, of Utrecht; and M. Charles René Zeiller, of Paris. It is a matter of congratulation to the Society that these distinguished names have been added to our roll.

The Council have awarded the Linnean Medal this year to that great Cytologist and Morphologist, the professor of Botany at Bonn, Geheimrath Dr. Eduard Strasburger. We are honouring ourselves as well as doing homage to the recipient, in conferring this, the highest distinction in our power, upon such an eminent man of science.

During this Session we have continued the practice recently proposed of arranging occasional discussions on subjects of general biological interest introduced to our notice by one or more of our leading experts. Scientific opinion is divided as to the value of set discussions on debatable matters. It is often said that no one who has worked or thought much on such a subject changes his opinion as a result of the discussion. That may well be true of the protagonists; and it may also be true, as is frequently urged, that the best discussions are those that arise spontaneously from the reading of a paper or the exhibition of a specimen. But for most of us, discussions such as we have had here during this Session are both interesting and valuable. Those who play only minor parts in the action and those who are content to listen to the arguments, must benefit from hearing the subjects set out for examination first from one side and then from the other. I am one of those who consider that both in this and in other Societies the exhibitions and the criticisms and discussions, formal and informal, arranged or spontaneous, are usually the most interesting and instructive parts of the proceedings and are well worth the time devoted to them.

Some of the most valuable papers—works that we desire to encourage by all means, and which when printed are important contributions to science and an ornament to our publications—are quite unsuitable for reading to an audience. In such cases, if the author is unable to explain briefly what his paper is about, I should advocate that he be invited to communicate the work by title only, and let the time so gained be devoted to exhibitions and discussions, as I am convinced that these last do more than the reading of papers to keep our members together and add to the vitality of the meetings. I would remind you especially of the interesting discussions we have had in the past session upon "Digestion in Plants," opened by Professor Vines, upon "Ecology," following upon a paper by Mr. Tansley, and upon "Nomenclature," brought before us by Mr. Stebbing.

We have this special advantage in our Society for the discussion of subjects of general biological application, that we are a body of Botanists and Zoologists working and consulting together. Thus
both sides of living nature are represented, and we can throw light upon questions that arise from the standpoints of very varied lines of biological investigation.

As this occasion is not only our annual business meeting, but also our commemoration of the birthday of Linnaeus, our thoughts naturally turn to the life and work of the great Swede to whose influence upon the progress of Science botanists and zoologists are equally indebted.

It has occurred to me that you may be interested to hear a few remarks upon a section of his work which is, I believe, little known, but which I have had occasion recently to look into—a subject moreover that has in itself an attraction for most men, and also women—namely, Pearls. Considering the activity of his mind and the wide range of his work, no one will be surprised to hear that Linnaeus experimented on the formation of pearls in shell-fish, and that he believed he was able to produce valuable pearls by artificial methods. I do not refer to the manufacture of artificial pearls, but to the artificial stimulation of shell-fish so as to induce them to produce by the natural process real pearls in increased number or at an unusual time or place. With such an object in view, it is necessary to enquire first how pearls are naturally produced in shell-fish. One of the Linnean manuscripts which I shall have to tell you of presently states:—"It is certain that nature produces pearls every day, and if anyone be able to steal from her this knowledge, it can only be he whom she has admitted into her interior and most sacred places." Linnaeus had better grounds than anyone else of his time for considering himself as so privileged.

There is an early Hindu belief that at night or during heavy rain the Pearl Oysters ascend to the surface of the sea, open their shells to the air and take in drops of fresh water which become consolidated as pearls.

Pliny and other classical writers record the similar belief that pearls are caused by drops of dew which enter the gaping shell when uncovered with water. A more poetic form is that they are due to the tears of the Nereids, or as Moore has it in ‘Peri and the Pearl’:

"And precious the tear as that rain from the sky
Which turns into pearls as it falls in the sea."

Colombus, we are told, was convinced he had found the locality for Orient pearls when he reached a spot where the trees grew down into the sea and had their roots covered with oysters gaping ready to receive the dewdrops from the leaves above.

Ælian, on the other hand, thought the pearls were formed by a lightning-flash entering the opening shell; and many other writers since have speculated as to mysterious pathological effusions, as to displaced ova, as to similarity to calculi and to galls, and as to calcification of deposits round sand-grains, algae,
ova, embryos, and various kinds of parasites or other organic nuclei. I give here, in tabular form, some of the leading names (by no means a complete list) in the history of this enquiry, with, where known, the species of shell-fish on which the observations were made, and an indication of the view held, with more or less justification, as to the nature of the nucleus around which the pearl is formed.

<table>
<thead>
<tr>
<th>Author</th>
<th>Shell-fish investigated</th>
<th>View as to origin of pearl or nature of nucleus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pliny</td>
<td>Oriental Pearl Oyster...</td>
<td>Drops of dew.</td>
</tr>
<tr>
<td>Ælian</td>
<td>Do</td>
<td>Lightning-flash.</td>
</tr>
<tr>
<td>Rondeletius, 1558</td>
<td></td>
<td>Parasites; also concretions.</td>
</tr>
<tr>
<td>Redi, 1654</td>
<td></td>
<td>Grain of sand.</td>
</tr>
<tr>
<td>Réaumur, 1717</td>
<td></td>
<td>Pathological effusion of shell-matter.</td>
</tr>
<tr>
<td>Sir E. Home, 1826</td>
<td>Anodonta</td>
<td>Abortive ova.</td>
</tr>
<tr>
<td>Filippi, 1852-56</td>
<td>Margaritana and Anodonta Do.</td>
<td>Distomum (cercaria) &c.</td>
</tr>
<tr>
<td>Küchenmeister, 1856</td>
<td></td>
<td>Mite (Limnochaerest anodontae).</td>
</tr>
<tr>
<td>Von Hessling, 1858</td>
<td>Both marine and fresh-water.</td>
<td>Sand, algae, ova, parasites.</td>
</tr>
<tr>
<td>Meckel, 1856</td>
<td></td>
<td>Calculi.</td>
</tr>
<tr>
<td>Moebius, 1857</td>
<td></td>
<td>Entozoa.</td>
</tr>
<tr>
<td>Kelhart, 1857-59</td>
<td>Ceylon Pearl Oyster</td>
<td>Sand, diatoms, ova, parasites.</td>
</tr>
<tr>
<td>Pagensteecher, 1858</td>
<td>Anodonta and Mytilus</td>
<td>Pathological concretions.</td>
</tr>
<tr>
<td>Garner, 1871</td>
<td></td>
<td>Distomum.</td>
</tr>
<tr>
<td>Harley, 1889</td>
<td></td>
<td>Calculi round inorganic or organic particles.</td>
</tr>
<tr>
<td>Comba, 1898</td>
<td>Margaritifera vulgaris...</td>
<td>Parasites.</td>
</tr>
<tr>
<td>Diguert, 1899</td>
<td>Melagrina margaritifera.</td>
<td>Pathological calcification of fluid formed around parasite.</td>
</tr>
<tr>
<td>Giard, 1897, 1901</td>
<td>Donax, Tellina, &c....</td>
<td>Distomids.</td>
</tr>
<tr>
<td>Dubois, 1901, 1903</td>
<td>Mytilus and Margaritifera.</td>
<td>Distomid larvae.</td>
</tr>
<tr>
<td>Jameson, 1902</td>
<td>Mytilus edulis</td>
<td>Distomid (Cercaria).</td>
</tr>
<tr>
<td>Herdman & Hornell, 1902,</td>
<td>Ceylon Pearl Oyster</td>
<td>Larval Cestodes.</td>
</tr>
<tr>
<td>1903, 1903</td>
<td>(Margaritifera vulgaris).</td>
<td></td>
</tr>
<tr>
<td>Seurat & Giard, 1903, 1904</td>
<td>Melagrina margaritifera.</td>
<td></td>
</tr>
</tbody>
</table>

Omitting the more fanciful views, there are three main methods which have been advanced as explaining the formation of pearls; and, as is so often the case where there are several competing theories, it cannot be said that one only is correct and of universal application and that the others are quite erroneous. The three I refer to are: (1) the grain-of-sand irritation; (2) the pathological secretion; and (3) the stimulation caused by the presence of a parasitic worm, which acts as a nucleus around which an epithelial sac deposits successive layers of pearly material. Let me say a few words about each of the two last before passing to the first view, the one with which Linnaeus was more closely associated.
The view that the pearl is produced as a calculus was originated by Réaumur in 1717, followed by Bohadsch in 1761, was supported by Meckel and by Pagenstecher nearly a century later, and again by Dr. George Harley in 1889. I agree with Giard that a considerable resemblance between the pearl and an animal calculus is compatible with the parasitic theory. Calculi commonly form around a nucleus, and many parasites are known to have calcified cysts deposited over them. Some pearls, not the best, are probably formed as calculus-like growths independently of vermean parasites. Even when the parasite is present, the pearl is produced by the molluscan host, and not by the parasite, and so has been justly compared by more than one writer to an animal gall.

It is commonly thought that the Italian naturalist F. de Filippi originated in 1854 the view that the nucleus of the pearl is really organic, being an encapsulated parasite. But Giard has recently reminded us that Rondeletius propounded the same view in 1558, and that ages before that Androsthenes, who had travelled in the East, is reported by Athenæus to have compared the developing pearls in the oyster to the Cestode larvæ in pork. This, in the absence of microscopic examination, can scarcely be regarded as a scientific demonstration; but it was, at least, a very happy guess, for one of the first facts Mr. Hornell and I were able to determine in connection with the Ceylon pearl oyster in the spring of 1902, was that the Orient pearl in the Gulf of Manaar is deposited around the young larva of a Cestode.

Coming to actual identifications in comparatively recent times, we find that Filippi's pearl-parasite in Anodonta cygnea was the Trematode Distomum duplicatum, v. Baer. Robert Garner, in our own Journal (Zool. vol. xi. 1871, p. 426) records "Distomes" from both freshwater and marine mussels; and Giard attributes the origin of pearls in Donax and Tellina to a species of Bradycoleum—all cases of Trematoda. Several investigators since (such as Dubois and Jameson) have found the same to be true of the pearl-production in Mytilus edulis and in various other Pelecypoda.

Other observations, more recently, have shown Cestoda to be the worms concerned in the production of the Orient pearl; but I do not go further into that matter on the present occasion, as my purpose is to remind you of the historic connection between Linneæus and pearl-production.

Most of the attempts* at artificial margarosis—the production of pearls by stimulation of the mollusc—have been based upon the belief that the nucleus of the natural pearl is an inorganic particle. The "grain-of-sand" theory was supported by Redi and many other early naturalists, and is the view that has been most generally

* There is also the other suggested method—by infection with the parasite—which I hope to discuss on another occasion.
adopted in the text-books and in educated public opinion, as expressed in Sir Edwin Arnold's lines:

"Know you, perchance, how that poor formless wretch—
 The Oyster—gains his shallow moon-lit chalice?
 Where the shell irks him, or the sea-sand frets,
 This lovely lustre on his grief."

There is no doubt that occasionally a grain of sand does form the nucleus of a free pearl. Mr. Hornell and I found three such, out of hundreds of pearls examined, in the course of our Ceylon investigation. But as a rule any such foreign inorganic matter introduced between the mantle and the shell gives rise only to a pearly or nacreous excrescence attached to the shell. Artificial pearls of an inferior sort are, however, sometimes produced in this way; and the practice in China of forming rows of nacreous beads or images of a Joss, or of Buddha, on the inner surface of the freshwater Dipusus plicatus, Leach, depends simply upon the fact that foreign bodies placed outside the mantle will be cemented to the shell by a layer of nacre.

It is generally believed amongst naturalists that Linnaeus was for some time engaged in an endeavour to produce artificial pearls; but few, if any, seem to know what his process was, and what it resulted in. The literature of pearl-formation contains various vague references to Linnaeus's "secret process," but no description of it, except an article in Swedish by Fähræus in 1852*. In Pulteney's 'General View of the Writings of Linnaeus' (2nd edit., London, 1805, p. 93) it is stated: "We are unacquainted with the means by which he accomplished this extraordinary operation, but may observe that it is probable . . . that the method consisted in injuring the shell externally, perhaps by a perforation . . . " &c. Such a recent work as Dr. Lyster Jameson's "Origin of Pearls" (Proc. Zool. Soc. 1902) states that "Chemnitz, Beckmann, and others (1791) regarded Linnaeus's 'secret process' as merely boring the shells. However, no subsequent boring experiments have yielded anything but blisters, and the popular notion of Linnaeus's modo operandi is little more than a guess." That being so, you will be interested to hear that our own Linnean library and the collection here has recently afforded me the means of making known to you the truth as to this "guess."

We have amongst the treasures of our library a manuscript volume labelled "Linnaeus on Pearls," given to the Linnean Society, in January 1871, by Oscar Dickson of Gothenburg, and attested by Jacob P. Bagge to be a true copy in Swedish [on the left-hand pages] and a faithful translation † into English [on the right-hand pages] of the original documents which were [in his possession

† The translation is not perfect in all respects. I am indebted to my friend Mr. Harald Ehrenborg, Swedish Consul at Liverpool, for help in determining some points in the Swedish.
and had been obtained by his grandfather (Herr Peter Bagge) from Linnaeus. The papers consist of the documents received by order of "The Secret Committee" of the State Council of Sweden, in 1761, signed by Judge Olivetcreutz, respecting the pearl-fishery and particularly the claim of the Archiater and Knight Carl Linnaeus to produce genuine pearls by impregnating mussels.

This interesting series of documents begins with a letter from the Archiater Linnaeus to Colonel Baron Funck, dated 6th Feb. 1761, stating that he “possessed the Art” of impregnating mussels, and that he offered to make known the secret for the public benefit and use on condition that the State would give him a suitable reward. A subcommittee was evidently appointed to confer with Linnaeus, and on the 27th July 1761, to quote the manuscript, “the said Archiater appeared before the deputies, when he verbally explained his Art.” There are in all 15 documents in the book, being records of various meetings, reports of the deputies to the “Secret Committee,” lists of Linnaeus’s claims for recognition by the State, and finally the report of the Secret Committee approving of the “Art” of the Archiater and recommending that a reward of 12,000 dollars * silver money should be given. At one of the meetings Linnaeus produced certain mussel-shells which he had operated on by his secret method, and 9 genuine pearls which he had produced “as a token and proof of the truth of the Art.” These were taken by the Chairman of the Committee to the crown-jeweller Berg, who, after remonstrating ineffectually on the iniquity of spoiling such gems, cut them in half, and declared, the Chairman tells us, that they were exactly like ordinary pearls.

There is some evidence that Linnaeus was ennobled on account of these discoveries in regard to pearl-formation, and the date (1761) certainly coincides, but it does not appear that he was ever awarded the 12,000 silver dollars recommended by the “Secret Committee.” On the other hand, the secret was bought for 6000 dollars, in Sept. 1762, as appears from another manuscript volume in our library (labelled “Pearl Fisheries: Linnaeus MS.”), by a Gothenburg merchant, Peter Bagge, the grandfather of the J. P. Bagge mentioned above. And we learn that the King, Adolph Frederick, gave a patent, dated Sept. 7th, 1762, authorizing Bagge to practise the Art without interference or competition.

Throughout the MS. “true copy” of Linnaeus’s communications and the reports of the “Secret Committee,” whenever we seem to be coming to close quarters with the actual modus operandi the text breaks abruptly into rows of dots and an annoying reference to certain other papers labelled A. to H., which are not to be found in the volume. So that although these manuscripts in the first volume afford interesting glimpses of Linnaeus’s doings and modes of thought, they give absolutely no information as to his

* The Daler in question was equivalent to about 18 pence, so the sum stated would be nearly £1000.
secret method of pearl-formation. This seems to have been exactly the predicament in which Mr. Bagge the grandson found himself when he inherited his grandfather’s papers bought from Linnaeus, but apparently made no use of. He explains in the second MS. volume to which I have referred, and which contains the missing papers A. to H., how it was that his grandfather and his father were unable to take advantage of the rights they had acquired, and how he himself was not in a position to do so until after the lapse of 60 years from the original purchase.

It is, however, evident that J. P. Bagge eventually contemplated pursuing the industry of pearl-formation by Linnaeus’s method, as we have in this volume a copy of a letter from the King of Sweden, dated Feb. 27th, 1822, confirming to him the privileges his Grandfather had obtained by purchasing the secret in 1762. It is evident also that he was troubled by the thought that possibly Sir James Smith possessed a copy of the secret amongst his Linnaean papers, or that he or others in England might be able to hit upon the method by an examination of the pearls and shells which it was known had gone to London. In a “Private Memorandum” in our MS. book, J. P. Bagge says:—

“Question A. Shall I write to Sir Jas. E. Smith and ask him for the pearls and mussel-shells which produced them?

“Remarks. If he is not inclined to give up all, perhaps he may the half, particularly if I offer him the original merit list of Linnaeus in exchange, a document he may deem interesting either for the Linnaean Society or to publish in one of the new editions of Sir James’ works. I think I could besides offer the value of the pearls in money according to survey, and as they are not connected with Botany perhaps, Sir Jas. thinks them worthless, in a scientific point of view. It would certainly be pleasant, in offering the secret, to be able to produce specimens of pearls actually produced by Linnaeus. Perhaps he would lend them for some time.”

Probably at that time (about 1820) Bagge hoped to induce the State, or some individual or company in Sweden to take the matter up and acquire his rights. He evidently in the end wrote something to Sir J. E. Smith, for we have a copy of the answer, which is as follows:—

(Copy of Sir James E. Smith’s letter to J. P. Bagge.)

“Holkham, Norfolk,
Nov. 28, 1821.

“Sir,

I received your packet at Norwich, my usual residence, and I take the opportunity of a little leisure in the country to answer it.

“The only pearls I ever expected from the possession of your illustrious countryman’s literary treasures are pearls of science, in which I have not been disappointed. I am contented with these,
and am happy that Sweden appears satisfied with what I have done for the honour of Linnaeus and for the science to which I have devoted myself, in humble imitation of that great man.

"I believe I am possessed of manuscripts of his own explaining the secret of producing pearls. I have also in my own cabinet of shells specimens of pearls so produced, and of the muscle-shells, in various states upon which experiments have been made. I have no intention of carrying on the scheme—still less of paying £500 for any further information, nor, in short, of entering at all on the subject, for which I have no leisure.

"I return you my best thanks for the trouble you have already taken, but beg you will take no more on my account.

"I am, Sir,

"Your very obedient servant,

J. E. Smith."

Linnaeus wrote, on Feb. 6th, 1761, "I have heard of people existing who pretended to make gold, but never of anyone who could produce pearls,"—and again, "I have with infinite care taken pains to explore the cause of pearls being generated and how nature proceeds to accomplish it."

In thinking that no one else before that time had produced pearls Linnaeus was apparently wrong, as we find that in his own country a decade earlier, between 1751 and 1754, a certain Inspector Frederic Hedenberg was paid a salary to inoculate the pearl mussels of Lulea in Lappmark with "pearl-seeds," which he manufactured, and then re-plant the mussels. Certain pearls were produced by the Inspector which it is recorded were sold for some 300 silver dollars.

Linnaeus's first experiments with pearls date back, however, to a still earlier period, for in the 2nd vol. of Linnaeus's Correspondence, published by Sir J. E. Smith (p. 428), there is a letter from Linnaeus to Haller, dated Upsala, 13th Sept. 1748, saying: "At length I have ascertained the manner in which pearls originate and grow in shells; and I am able to produce in any mother-of-pearl shell that can be held in the hand, in the course of 5 or 6 years, a pearl as large as the seed of a common vetch."

To this the Editor appends the remarks:—

"'For this discovery the illustrious author was splendidly rewarded by the States of the Kingdom.'—Haller."

"Specimens of pearls so produced by art in the Mya margaritifera are in the Linnaean Cabinet. The shell appears to have been pierced by flexible wires, the ends of which perhaps remain therein."

J. P. Bagge says in regard to the above remark by Sir J. Smith—

"This is the nearest I have seen anyone come to truth, but still it will be remarked by reading the Secret that more information is required to enable persons to practise the art."

Herr Bagge, in a MS. entitled "Statement," tells how his grandfather, being otherwise occupied, made no use of the
Linnean secret which he had purchased, and how his father could not find the documents, which were supposed for a time to be lost, and how he himself eventually found them when rumaging amongst a mass of family papers in search of a missing account. This was at a time when he was leaving Sweden for England, and his subsequent attempts to get the Swedish Government to buy his rights and to promote pearl-formation as an industry were apparently unsuccessful.

Since then nothing, I believe, has been done with the "secret," although various investigators and operators in different parts of the world, including Mr. Hornell and myself, have tried more or less similar methods of stimulating molluses to pearl-production— with but indifferent results. But I am by no means certain that artificial margarosis, either by these or some other methods, may not some day become a commercial success.

Linnaeus says: "As all the knacks of Nature are very simple, so is this when properly hit upon"; and there was certainly no great complication about his process. We are now able by means of these two manuscript books in our library to make out the details of the "secret process." By fitting the extracts labelled A. to H. in the one set of papers into the lettered gaps in the proceedings of the Secret Committee of 1761 in the other volume, we have the completed description in Linnaeus's own words.

The essential points made by Linnaeus seem to be:—(1) that in the formation of a pearl there is always some foreign matter ("peregrinum") which is slowly covered by successive lamellae of calcareous matter deposited by the mollusc; (2) that to induce pearl-formation when and where you wish, you must make a very small hole in the shell and insert a little round fragment of limestone fixed on the end of a fine silver wire; (3) that you must keep these artificial nuclei near the ends of the shell, so as not to interfere unduly with the animal's body; and (4) that the nuclei must, by means of the silver wire, be kept free from the shell so that the resulting pearls may not become adherent to it by a deposit of nacre.

That is all. It is certainly, as its author says, "very simple . . . when properly hit upon." Simpler even than the "knack of Nature," requiring a parasitic worm and several successive hosts, that we now believe is necessary to produce the finest pearls. And yet Linnaeus seems to have obtained by the process certain pearls which the crown-jeweller declared to be in every way as good as those produced naturally. Probably they were compared not with the most precious pearls from the pearl-oysters of Eastern seas, but with those of the Swedish fresh-water mussels (Unio margaritifera).

Our General Secretary has kindly helped me to find in the Linnean Collections the original shells and pearls made use of by Linnaeus in his secret process, evidently the specimens which J. P. Bagge was anxious to get from Sir J. E. Smith. These Linnean specimens are now exhibited on the table.
Linnaeus has said—"The Sciences have in all flourishing countries been the tenderest object of Government, as they distinguish civilized nations from barbarians, and make a small European principality shine more than the greatest Oriental empire."

I am not sure that we have all had the same happy experience of the usual objects of a Government's tenderest care. But although our native pearls may not have the same lustre as those from the Orient, we shall all agree with the celebrated Swede that the cultivation of Science may "make a small European principality shine more than the greatest Oriental empire."

The Right Hon. Lord Avebury, P.C., F.R.S., then moved: —
That the President be thanked for his excellent Address, and that he be requested to allow it to be printed and circulated among the Fellows.

This having been seconded by Dr. Maxwell T. Masters, F.R.S., was put by Lord Avebury, and carried unanimously.

The President then addressed Sir Dietrich Brandis, K.C.I.E., F.R.S., and in presenting the Linnean Medal to him on behalf of Prof. Eduard Strasburger, F.M.L.S., specified the services which had moved the Council to make this award.

The President said:—

"Sir Dietrich Brandis, The Council of the Linnean Society, desiring to do what honour is in their power to your very distinguished countryman the great botanical histologist and morphologist at Bonn, Geheimrat Professor Eduard Strasburger, have singled him out from the botanists of the world as the recipient this year of the Linnean Gold Medal. Strasburger is known as a leader in science wherever biological teaching and biological investigation are carried on, and the recognition of his great merit is by no means confined to botanists. I well remember the impression he made upon myself and other zoologists by his views upon the changes in the nuclear chromosomes in an address given at the last Oxford meeting of the British Association, and the great value of his cytological work was known to us long before that; while to the student of botany he must have been an example, a guide, and an inspiration for nearly forty years. His 'Lehrbuch der Botanik' (1894) and 'Das botanische Practicum' (1884) are standard works familiar in our universities and fundamental in their effect on laboratory practice. Few, if any, amongst botanical investigators have produced a greater number of works of first-rate importance influencing the teaching in nearly every branch of the subject. Beginning, in 1867, with his researches on the development of the stomata, passing in 1872 to his great work on the Conifers and Gnetaceae, which we recognize as one of the first morphological investigations from an evolutionary point of view inspired by Darwin,
and then turning in 1879 to his studies on Angiosperms and Gymnosperms, followed since by many later papers, we have a truly remarkable series of works on the scientific anatomy and morphology of the higher plants. His important contributions to physiology, such as those dealing with the ascent of water in trees in 1891, only require mention; he has been an embryologist as well as an anatomist, and he has even touched on paleobotany. It is, however, as a cytologist that Strasburger has probably won the greatest distinction, as in this subject he is, on the botanical side at least, *facile princeps*. His remarkable series of histological memoirs from 1876 onwards, form the foundation and a very large part of the superstructure of modern cytology. In close connection with his cytological work on the nucleus and protoplasm is his investigation of fertilization in plants, where he made the fundamental discovery of the great importance of the fusion of the male and female nuclei. There is no need to say more. His influence on science has been wide-reaching, and his fame is great. Naturally he has received many distinctions both in his own country and here, where we know him as a Foreign Member of the Royal Society (1891) and of our own (1880), and as an Honorary Doctor of Civil Law of Oxford. We in the Linnean Society offer him, through you, our homage, and trust that he may value, as a testimony of our high appreciation, this latest honour, the award of the Linnean Gold Medal.

"Sir Dietrich Brandis, I have great pleasure in asking you, his countryman, and yourself a distinguished botanist, to transmit this medal to Professor Strasburger."

Sir Dietrich Brandis having received the Medal, made a brief verbal acknowledgment on behalf of the recipient. The following letters refer to the award.

Dear Sir,

I have received the news that the Council of the Linnean Society of London has conferred upon me the Gold Medal. The honour thus bestowed upon me by this illustrious Society fills me with pride. I thank the members most sincerely for this honour as well as for the scientific help and encouragement I have on many occasions received from my English colleagues. It was above all the immortal Charles Darwin, of whom your nation may well be proud, who in my youth filled me with enthusiasm for scientific researches, and turned my studies in the direction I have since followed.

Most unfortunately my duties detain me here to such an extent that it is impossible for me to be in London on May the 24th, and receive the Gold Medal personally. Sir Dietrich Brandis, my honoured friend, has kindly offered to do so in my stead.

I am, Dear Sir,

Yours sincerely,

B. Daydon Jackson, Esq.

(Signed) E. Strasburger.
Bonn, May 26, 1905.

The President of the Linnean Society of London.

HONORED SIR,

I am in receipt, through Sir Dietrich Brandis, of the Gold Medal with which your Society has in so high a degree honoured me. For this valuable and beautiful token I beg to express to you, and through you to the Members of the Society, my heartfelt gratitude.

Sir Dietrich Brandis has made me cognisant of the very kindly manner in which you, Mr. President, in your address referred to my work. This shall be a new inspiration to me, to the fullest extent to which my powers permit, to devote them with enthusiasm and love to those ideal tasks, the pursuit of which is undertaken in the hope of serving mankind.

I beg you to receive, Sir, the expression of my highest esteem.

Most sincerely yours,

(Signed) E. STRASBURGER.

The Obituary Notices were formally submitted, and the President having announced the date of the next General Meeting, the proceedings closed.

OBITUARY NOTICES.

John Birkett was elected a Fellow on the 16th June, 1846, and died on 6th July, 1904. He entered Guy's Hospital as a student in 1831, there became Lecturer on Surgery, and in 1846 brought out a translation of A. von Behr's 'Handbook of Human Anatomy,' and in 1850 a treatise on Diseases of the Throat. The address at the opening of the Medical School of Guy's Hospital in 1854 was given by him, and he was also author of articles on Hernia and the Pelvis in Holmes's 'System of Surgery.' [B. D. J.]

The Rev. Thomas William Daltry was the son of a clergyman, and was born at Hull on 7th June, 1832; he was educated at Sedburgh Grammar School and Trinity College, Cambridge, graduating B.A. in 1855, proceeding M.A. four years later. In 1858 he took Holy Orders, his first curacy being at Petworth, Sussex; a twelvemonth later he removed to Hambledon, and in 1861 to Madeley as Curate to his father; eighteen years later, upon his father's death, he was appointed his successor, and retained the living till his death. In 1865 the North Staffordshire Field Naturalists' Club was founded, and Mr. Daltry became one of the two secretaries from the first, drawing up the annual reports for twenty years; in 1879-80 he was President. Many of the papers published by this Society are from his pen, but though ready to study any subject connected with the pursuit of natural history, he was specially devoted to Lepidoptera.

As a Parish Clergyman he was active and hardworking, carrying out his sacred duties in an exemplary manner, and by constant
visitation of his parishioners, he acquired a knowledge of their wants, and their sincere regard, in a marked degree.

He was elected a Fellow 18th March, 1875, and died at Madeley, on 4th June, 1904. A movement is on foot to place a memorial window in the church in which he ministered so long. A portrait is given in the 'Transactions' of the North Staffs. Field Club, 1904–5.

James Epes, junr., died at his house, Beulah Hill, Upper Norwood, in March 1905; he had been a Fellow of this Society since 5th March, 1885. In the 'Transactions' of the Croydon Natural History and Scientific Society for 1902–03, he published a paper entitled "A Trip to the West Indies," describing the various objects of natural history noticed by him, but especially investigating the cocoa plants in the various islands, their varieties, diseases, insect-pests, and the like. He was naturally drawn to this as the business firm in which he was a partner was largely interested in the manufacture of cocoa. This address was given to the Croydon Society shortly before the end of his Presidency of two years, he having been a member since 1881. On one occasion he had exhibited cocoa-pods grown and ripened at his Norwood residence, for which he was awarded a Silver Banksian Medal by the Royal Horticultural Society.

William Ferguson, F.G.S., died at his residence, Kinmundy, Aberdeenshire, in 1904; he had been a Fellow of the Linnean Society since 6th June, 1854, in which year he joined the Geological Society, to whose publications he contributed a paper in 1857 on the "Chalk-flints and Greensand found in Aberdeenshire."

Wickham Flower, F.S.A., was the eldest son of John Wickham Flower, of Park Hill, Croydon, and was born in that town, in 1835, receiving his education at Tonbridge School. A solicitor in large practice, he delighted to give his spare time to his garden and to antiquities. He issued 'Dante, a defence of the ancient text of the Divina Commedia' in 1897, and 'Aquitaine; a Traveller's Tale,' illustrated by J. Pennell, in the same year.

At the time of his death, 19th September, 1904, he was engaged on the history of Great Taugley Manor, his country seat, a very interesting place dating from the time of Henry VII., surrounded by a moat, and having an extensive garden attached. Indoors it contained a splendid collection of pictures, tapestries, glass, and old books. He joined this Society so recently as 20th January, 1898.

Alexander Fry was born at Pencraig, Herefordshire, on 10th September, 1821, and educated at Hazeldown near Birmingham, with a year at Neuilly, in the arrondissement of St. Denis, near Paris. In 1835, a boy of little more than fourteen years of age, he was sent out to Rio de Janeiro, where his father was engaged in Linnean Society Proceedings. —Session 1904–1905.
business; eight years later he was taken into partnership, visited England, was married, and returned to Rio after only a few months absence. With occasional trips elsewhere, he lived in Brazil till 1858, and his chief pleasure was in devoting his spare time to the study of insects, frequently spending hours at night collecting night-flying species by aid of a lantern.

Returning to England whilst still a young man, he continued to add to his collection, only ceasing when health and sight began to fail. Amongst these accessions were Parry’s collection of Longicornia, and large numbers collected by Wallace, Doherty, Whitehead at Kinabalu, and the types described by Bates. These having been examined and named by specialists, have a very high value, though their owner did not publish observations on any part of his possessions. On his return to England he had entered into business with his brother-in-law, the son of our late Fellow, Mr. John Miers, F.R.S., as Fry, Miers & Co., remaining a partner till 1898. He died at Norwood, on 26th February, 1905, aged 83, bequeathing his collections, the largest and finest of their kind in the United Kingdom, to the nation; the number is estimated at 200,000 specimens, especially rich in beetles. His Fellowship dated from 4th February, 1855.

John Horne, who died at St. Clements, Jersey, on 16th April, 1905, will be known to many as the author of ‘A Year in Fiji; or an enquiry into the botanical, agricultural, and economical resources of the Colony,’ London, 1881. He was attached in 1861 to the Department of Works and Forests, Mauritius, of which he became the head, and Director of the Botanic Gardens in that island. In 1877 he accepted an invitation from Sir Arthur Gordon, then governor of Fiji, to visit those islands, and spent a year’s leave in exploring them, and making a collection of plants, which were determined at Kew. The volume named above contains, in Appendixes, the author’s recommendations as to indiarubber, sandalwood, and general forest matters, with a list of the species known to occur on the islands, many new species with mere names, which were in part afterwards taken up by later writers. The total number of specimens sent by Mr. Horne to the Royal Botanic Gardens, Kew, between 1865 and 1883 amounted to nearly 3000. On retiring from the Colonial Service he settled in Jersey, where he died; his connection with the Linnean Society dated from 4th December, 1873.

Thomas George Bond Howes, born in London on the 7th of September, 1853, was the eldest son of Thomas Johnson Howes, and a grandson of Captain George Augustus Bond, of the Hon. East India Company’s Service. After education at a private school he found, at the age of twenty-one, a fair opening for the scientific career which he was destined to follow during nearly thirty years with ever increasing honour, satisfaction, and success.
At this starting point of his life he had the good fortune, the luck that waits on merit, to be engaged as assistant to Professor Huxley in the Biological Division of the Royal School of Mines. In this apprenticeship he won the respect and appreciation of his distinguished chief, to whom he was himself heartily attached. Accordingly in 1881 he was chosen to succeed Thomas Jeffery Parker as Demonstrator in Biology in what was at that time styled the Normal School of Science and Royal School of Mines, and at the same verbosely named institution he became Assistant-Professor in 1885. Though nominally assistant Howes was in reality the acting professor, Huxley's name in the titular professorship being retained partly out of respect to that celebrated man and partly for the glorification of the school itself. Earlier than this Howes had been appointed Lecturer on Anatomy at St. George's Hospital Medical School. In 1895 he succeeded Huxley in the full professorship of zoology in the great establishment which at this date received its more compendious and more dignified designation as the Royal College of Science. He gallantly fulfilled the duties of this office almost without interruption until the breakdown of his health in 1903, finally relinquishing it in 1904, when there was no longer any hope of his permanent recovery. He died on February 4th, 1905, lamented not only by those nearest and dearest to him, but by numerous colleagues in whom his cheerfulness and generous temper had kindled warm attachment, by old pupils deeply indebted to him for instruction and encouragement, and by many learned societies and associations which he had assisted in their business affairs with ever ready help or enlightened on various occasions from the vast stores of his scientific knowledge.

To the staple employment of his time already indicated, Howes added the following activities. He was at one time or another examiner in zoology at the University of London, in the honour school of animal morphology at the University of Oxford, in zoology and comparative anatomy for the Victorian University and for the University of New Zealand, and assistant examiner in elementary physiology, biology, and zoology to the Science and Art Department. Together with these obviously strength-taxing employments he readily accepted others which individually might seem unoppressive, but which by accumulation are quite fitted to produce an excessive strain on any man's endurance. Thus we find him at various dates, member of council and vice-president of the Zoological Society; treasurer of the Anatomical Society (1890–1903); treasurer of the Linnean Club; zoological secretary of the Linnean Society (1895–1903); serving on the zoology committee of the Royal Society; on the executive committee and delegate for the Colony of Victoria at the International Congress of Zoology (1898); delegate in various capacities and a vice-president at the Berlin Congress (1901); an active member of the committee for the reorganization of the Zoological Gardens (1902); president of
the Malacological Society in 1896 and again in 1897; president of the South-Eastern Union of Scientific Societies in 1900; president of the section of zoology of the British Association in 1902. He helped to found the Anatomical Society of Great Britain and Ireland in 1887. He was elected F.Z.S. and also F.L.S. in 1885; F.R.S. in 1897; honoured with the degree of LL.D. by the University of St. Andrews in 1898; with that of D.Sc. by the Victorian University in 1902. He was also a Corresponding Member of the Royal Society of Victoria and of the New York Academy of Sciences; Hon. Member of the Nottingham Natural History Society, of the Yorkshire Philosophical Society, and of the Essex Natural History Field Club.

Among the many pupils who passed through Howes’s Laboratory and Lecture-room, and who have since won or are steadily on the way towards winning scientific reputation, may be mentioned:—

Mr. R. H. Burne, present Secretary of the Malacological Society.
Mr. G. W. Butler, B.A., F.Z.S., studying the eggs of fishes.
Dr. J. E. Duerden, Professor of Zoology at Rhodes University, Grahamstown, S. Africa.
Miss Alice Embleton, B.Sc., F.L.S., R. S. Mackinnon Student for 1903.
Mr. Alfred Vaughan Jennings, F.L.S., F.G.S. (see Proc. Linn. Soc. 1903).
Mr. A. Coppen Jones, F.L.S., a bacteriologist.
Mr. W. L. Stevenson-Loat, specialist in fishery research in North Africa.
Mr. J. E. S. Moore, F.L.S., F.Z.S., whose researches in Lake Tanganyika are well known.
Dr. W. G. Ridewood, D.Sc., F.L.S., F.Z.S., F.G.S., Lecturer on Biology, St. Mary’s Hospital Medical School.
Dr. H. H. Swinnerton, D.Sc., F.Z.S., Marshall Scholar, the Royal College of Science, now of University College, Nottingham.
Mr. W. T. Harold Wager, F.R.S., F.L.S., Lecturer on Biology, the Yorkshire College.
Prof. G. S. West, Professor of Natural History at the Royal Agricultural College, Cirencester.
Mr. Martin F. Woodward, Demonstrator in Biology at the Royal College of Science, and Secretary of the Malacological Society of London (see Geol. Mag. dec. 4, vol. viii. p. 480, 1901).

Much might easily be written in appreciative comment on the character, the writings, and the influence of the lost friend who cherished the Linnean Society with so much earnestness of willing service. But the thoroughness which he threw into all his scientific undertakings has elicited so many tributes of honour to his memory, that it becomes expedient to avoid repetition even in eulogium. The simple outline of his career and work that has here been given should prove to the most critical that he was a
man unsparing of himself even to a fault, and that his object in life was the promotion of science, not the acquisition of riches or fame. [T. R. R. S.]

The following catalogue, chiefly compiled by Mr. B. Daydon Jackson for the benefit of this memoir, may be relied on as containing all the more important writings published by Howes, with the exception of various articles signed or unsigned which he contributed to 'Nature.'

The Journal of Anatomy and Physiology.
'The morphology of the mammalian coracoid. xxi. pp. 190-198.
Additional observations upon the intra-narial epiglottis. xxiii. pp. 587-597.
'Crania of three Rabbits (Lepus cuniculus), showing the presence of Wormian bones in the coronal and sagittal sutures. xxiv. pp. xvii-xix.
Variation in the kidney of the Common Thornback (Raia clavata): its nature, range, and probable significance. xxiv. pp. 407-422.
Notes upon the shoulder-girdle of certain dicynodontoid reptiles. xxvi. pp. 433-405.
1893. On the mammalian pelvis, with especial reference to the young of Ornithorhynchus anatinus. xxvii. pp. 543-556.

Philosophical Transactions of the Royal Society.

Proceedings of the Zoological Society.
1887. On the skeleton and affinities of the paired fins of Ceratodus, with observations upon those of the Elasmobranchii. pp. 3-26.
Exhibition of, and remarks upon, an original drawing of the head of an abnormal Palmarus (P. penicillatus). pp. 463-470.
(With A. M. Davies.) Observations upon the morphology and genesis of supernumerary phalanges, with especial reference to those of the Amphibia. pp. 495-511.
1890. Exhibition of, and remarks upon, some specimens of *Hatteria* showing the "pro-atlas" and vomerine teeth. pp. 357-360.

" On the visceral anatomy of the Australian Torpedo (*Hypnos subnigrum*), with especial reference to the suspension of the vertebrate alimentary canal. pp. 669-675.

1891. On the probable existence of a Jacobson's organ among the Crocodilia; with observations upon the skeleton of that organ in the Mammalia, and upon the basi-mandibular elements in the Vertebrata. pp. 148-150.

" Notes on variation and development of the vertebral and limb-skeleton of the Amphibia. pp. 268-278.

" Exhibition of, and remarks upon, some specimens of abnormal Marsipobranch Fishes. pp. 730-733.

1895. Exhibition of, and remarks upon, a photograph of an embryo of *Oroithorhynchus*. pp. 1-2.

" Exhibition of, and remarks upon, a skull of a Rabbit destitute of the second pair of upper incisors. pp. 521-522.

Transactions of the Zoological Society.

Journal of the Linnean Society (Zoology).

1890. On the intestinal canal of the Ichthyopsis, with especial reference to its arterial supply and the Appendix Digitiformis. xxiii. no. 146, pp. 381-410, pls. 1 & 2.

1891. On some hermaphrodite genitalia of the Codfish (*Gadus morrhua*), with remarks upon the morphology and phylogeny of the vertebrate reproductive system. xxiii. no. 148, pp. 539-558, pl. 14.

Transactions of the Liverpool Biological Society.

1892. On the affinities, intra-relationships, and systematic position of the Marsipobranchii. vi. pp. 123-147; pls. 8-10.

Presidential Addresses.

1902. In Report of the British Association for the Advancement of Science; Meeting at Belfast, Section D. pp. 618-638.
Works not included in serial Literature.

1885. An Atlas of Practical Elementary Biology. With a Preface by Professor Huxley, P.R.S.
1895. Wiedersheim’s Structure of Man, an Index to his Past History; translated by H. and M. Bernard: the Translation edited and annotated and a Preface written by G. B. Howes.

Lieut.-Col. LEONARD HOWARD LOYD IRBY was born in 1836, and received his education at Rugby, and at the age of 18 he joined the 90th Light Infantry, and with it proceeded to the Crimea, there serving till the fall of Sebastopol. He published his notes on Crimean birds observed at the theatre of war in the ‘Zoologist’ for 1857, but he was in India at the outbreak of the Mutiny and, with the present Lord Wolseley of the same regiment, took part in the relief of Lucknow. In 1867 Irby was transferred to the 74th Highlanders, retiring from the service about eight years later.

In 1861 he published in the ‘Ibis’ his “Notes on Birds observed in Oudh and Kumaon.” Birds were his favourite but not exclusive study, and in 1875 he produced his ‘Ornithology of the Straits of Gibraltar,’ from materials acquired during his frequent visits to Spain and the opposite coast; a second edition came out in 1895, containing an account of the Lepidoptera of the region. His other principal book appeared in 1887 as ‘British Birds: Key-list,’ in four years reaching a second edition. He joined the Zoological Society in 1873, and for many years served on the Council of that body; our own Society he joined on 21st June, 1888. He took much interest in the setting up of the life groups of birds at the British Museum, Cromwell Road, in some measure furnishing the material by his own skill in shooting. He died on the 14th May, 1905, soon after his return from Malaga, where he had passed the winter in familiar and delightful surroundings.

[B. D. J.]

Sir HUGH LOW was born 10th May, 1824, and died at Alassio on 18th April, in the present year. After an education at private schools he obtained an appointment in the Hon. East India Company’s service. But on his way to take this up, he became acquainted with Mr. (afterwards Sir) James Brooke, and the intimate friendship between them which resulted, diverted the
boy’s career from India to Borneo. Visiting that island at the early age of nineteen, young Low must have used his opportunities during the next two or three years with very remarkable precocity. For, having returned to Europe, in December 1847, that is while he was still in his twenty-third year, he was able to dedicate to his friend the Rajah his well-known book entitled ‘Sarawak: its Inhabitants and Productions; being notes during a residence in that country with H.H. the Rajah Brooke: by Hugh Low, Colonial Secretary at Labuh-an.’ This work is still full of charm and instruction for every lover of natural history, and shows how receptive a mind and how wide a range of sympathy its author must have possessed. Men and minerals, fauna and flora, alike engage his earnest attention. It was no slight triumph for a young botanist, after describing several novel and fascinating plants, to be able to add: “But of all those above mentioned, though they excel in beauty, none so much attract our curiosity as the various and beautiful pitcher-plants, eight different species of which I discovered in the western part of the island.” As to the quest for pearl and mother-of-pearl, he remarks that “the fishery of the Soolu Islands has been long known and highly valued: in proper hands it would be the finest in the world; but pearls are produced in plenty all along the northern coast.” His description of education as practised in those days by the people of Sarawak is rather historically interesting than exemplary for modern use. The boys, and the boys only, were taught. What they learned was to read and write their own language and to read and recite the Koran in Arabic, a tongue which neither they nor their teachers could translate. “The different periods of the progress of the son’s advancement in educational knowledge afford the parents an opportunity of giving feasts to their relations, when the son is examined by the master in the presence of his family and connexions, who, in consideration of the liberal and expensive feast usually provided for them, congratulate the father on the splendid talents of the son.” Notwithstanding these little weaknesses on their part, Low entertained a very favourable opinion of the people, and with generous warmth cautions the reader “that the terms of treacherous, and other equally abusive epithets, are no more applicable to them than we may suppose they would be to European nations in circumstances when, reduced by oppression, they could not revenge themselves by open and honest means.”

In the ‘Gardeners’ Chronicle’ for April 29, 1905, his friend Mr. F. W. Burbidge, F.L.S., has given an interesting summary of Low’s later exploits among the mountains and forests of Borneo in botanical research, which were crowned with many successes. He was appointed British Resident of Perak in 1877 and retired in 1887. In reward for his political services he was created K.C.M.G. in 1883 and G.C.M.G. in 1889. He was elected a Fellow of the Zoological Society in 1893, and of the Linnean Society in the following year. He was chosen to serve on the Council of
our Society in 1896. Those who had the pleasure of meeting him from time to time at the Linnean Club in the latter part of his life will remember his dignified presence and amiable manners. On one of these occasions, conversation having turned to the ever fertile subject of affection between man and other animals, he told an experience of his own. Recollection of what he then said has been kindly confirmed by Lady Low, who writes as follows:—

"The pet animal in question was one of the Gibbon Monkeys. It never left my husband, sat by his pillow, travelled with him on his elephant with its arms round his neck, sat by him while he worked in his office. He had cured the little beast of a bad wound early in their acquaintance, and this may have helped to deepen its devotion to him. But he had a quite extraordinary power of attracting and keeping the devotion of all weaker creatures. His strength and his tenderness were alike so great." In its last illness "the little monkey in question had to be put out of my husband’s bed and to have a little warm bed made for it beside him on the verandah. It raised itself up at the last and died with its chin leaning on the ledge that separated it from its master and its eyes fixed on him." This was exactly the story told by Sir Hugh Low himself, except that he said nothing about the curing of the wound, and implied by his tone that all credit for the friendship was due to the monkey and none to the man. In his intercourse with his fellow human beings, civilized or uncivilized, he appears to have uniformly acted in a lofty spirit of unselfishness. While never missing an opportunity for furthering the interests of science, he sought no personal recognition. He suppressed his own ardent longing for scientific pursuits, because love of his neighbour demanded from him work of a more immediately practical character. His widow writes:—"He never sought nor cared for reward or praise. The love and veneration which surrounded him in his closing years were to him always a matter of unfeigned surprise and of a gentle pleasure for my sake who had the privilege for twenty years of sharing his life and fortunes.” Permission has been obtained for confirming the testimonies of domestic affection and private friendship by the publication of the following official letter addressed to Lady Low from Downing Street, April 27, 1905:—

“Madam, I am directed by Mr. Secretary Lyttelton to express the regret with which he has learned of the death of your husband, Sir Hugh Low, and to convey to you his sympathy with you in your bereavement.

“Sir Hugh Low for forty years rendered exceptional service to the British Government in Labuan and in the Malay Peninsula. Taking up the appointment of Resident of Perak at a time of peculiar difficulty, he laid the foundation and in large measure reared the structure of the present prosperity of the Federated Malay States.

“He won the confidence of the Native Races placed under his
charge in a singular degree, and he equally secured and retained the confidence of those under whom he served.

"Mr. Lyttelton wishes as Secretary of State for the Colonies to bear witness at once to his public services and to the character and qualities which inspired those services: and he would put on record in this letter, a copy of which will be sent to the High Commissioner for the Federated Malayan States, his sense of the lasting gratitude which is due to the name and the memory of Sir Hugh Low from all who dwell in or are concerned with the British possessions and Protectorates in the Malay Indies.

"I am, Madam, your obedient servant,

(Signed) C. P. Lucas."

The Linnean Society cannot fail to deplore the loss of one who was so great an ornament to its ranks, and whose companionship in the past would have been still more emphatically cherished, had not his serene unconsciousness of his own distinguished capacity kept him ever in the background.

[T. R. R. S.]

John George Luehmann was born in 1843, and settled in Victoria in 1862. Five years later he became secretary to Sir Ferdinand von Mueller, and remained in the department of Government Botany till shortly before his death. In this post he made the preliminary examination of the large accessions from various parts of Australia which were received at Melbourne, and were described by F. von Mueller, during the last eighteen years of his life, hereby acquiring a critical knowledge of the large genera Eucalyptus and Acacia. In 1896, after the death of his chief, he was appointed Curator of the National Herbarium, and subsequently Government Botanist. His published works were confined to short papers in the local societies' publications, one, reprinted from the issues of the Field Naturalists' Club of Victoria, is entitled "Reliquiae Muellerianae;" Melbourne, 1896, a small pamphlet of a few pages. Confining his attention to the work of his department, he has left no printed record to testify to his acquirements, beyond the acknowledgment printed by his chief in the preface to the 'Key to the System of Victorian Plants' in 1885. Mr. Luehmann joined our Society on 16th April, 1885, and died on 18th November, 1904, aged sixty-one. [B. D. J.]

Robert McLachlan, F.R.S., F.L.S., F.Z.S., &c., died at his residence, Westview, Clarendon Road, Lewisham, on the 23rd May, 1904, in the 68th year of his age.

He was born at Upper East Smithfield on the 10th April, 1837, and was the son of Hugh McLachlan of Glasgow, who in early life settled in London. The early years of R. McLachlan's life were largely spent in the neighbourhood of Hainault Forest, near which his father had a small farm, and there he first acquired his love for Natural History. When he was about 16 he lost
his father, and on coming of age he found himself possessed of sufficient means to enable him to pursue his studies unfettered by business claims on his time. He was, however, nominally a shipbroker, and had an office in Fenchurch Street for some years.

In the Presidential Address to the Entomological Society of London in 1886, Mr. McLachlan gives a short autobiography of his early life. He there tells us that when a boy his natural history instincts embraced "the whole Systema Naturae." Land and freshwater shells, and butterflies and moths, seem to have been his chief zoological fancies, but above these botany appears to have dominated. In 1855 he went for a voyage to New South Wales and Shanghai, and on this tour he amassed a considerable herbarium, the species of which were subsequently named with the assistance of the late Robert Brown. Soon after his return he must have commenced his entomological studies, the earliest of which he devoted to Lepidoptera, as he published a paper on *Acentropus* in the 'Entomologist's Weekly Intelligencer,' in 1861. In the same year he published his first Neuropterous paper in the 'Entomologist's Annual,' and from that time his papers on Lepidoptera and Neuroptera became numerous. The latter subject, however, soon occupied all his time. His chief work, 'A Monographic Revision and Synopsis of the Trichoptera of the European Fauna,' a thick volume with supplements altogether of 626 pages, with 59 plates of structural detail, was completed in 1880. His other numerous writings are scattered throughout the Entomological literature of his time, several of his papers appearing in the 'Journal' of the Linnean Society between the years 1871 and 1892.

Mr. McLachlan became a Fellow of the Entomological Society of London in 1858, and was President in 1855 and 1886, Secretary from 1868–72, and twice Treasurer; the latter office he held at his death. He was elected a Fellow of the Linnean Society in 1862, of the Royal Society in 1877, of the Zoological Society in 1881, of the Royal Horticultural Society in 1888; he was also on the Council of the Ray Society.

He was an honorary member of the Entomological Societies of Belgium, Holland, Sweden, Switzerland, the Société Impériale des Amis des Sciences Naturelles, Moscow, the Societas pro Fauna et Flora Fennica of Helsingfors, of the New Zealand Institute, of the South London Entomological and Natural History Society, and of the Natural History Society of Glasgow.

[Edward Saunders.]

Carl Eduard von Martens was born at Stuttgart on April 18th, 1831. His father held the position of Councillor in the Württemburg Civil Service, but is better known as the author of a classical work, 'Reise in Italien,' and as one of the earliest and most successful explorers of the Fauna and Flora of that South German State. Young Martens was an only son and the devoted
brother of three elder sisters, who took an intelligent interest in their father's favourite pursuits; one was an accomplished artist, assisting father and brother by her pencil and brush to the end of her days. In such surroundings the boy developed into a Naturalist by heredity and example, but from his earliest years his interest concentrated itself in collecting and studying shells. This interest, however, was not allowed to interfere with the claims of school, and throughout his school-years he distinguished himself as an industrious and conscientious worker, while, on the other hand, he associated but little with his schoolfellows, nor did he exhibit any taste for their games.

At the University of Tübingen he passed through the regulated curriculum of a medical student; at the same time his natural history studies expanded upon a wider and safer basis under the tuition of Hugo Mohl, Quenstedt, and Rapp, and the structure of animals and their distribution in space and time claimed at this period his special attention. Having received his M.A. degree, he migrated in 1855 to Berlin, to which University he, like other contemporary Zoologists, was attracted by the fame of Johannes von Müller. He accompanied the latter on one of his vacation tours to Norway, and soon after his return obtained an appointment at the Zoological Museum, which was then under the direction of Lichtenstein. To this institution he remained attached for the remainder of his life, a period of nearly half a century, eventually rising to the rank of Second Director in 1887. The division of Invertebrates (exclusive of Insecta) was assigned to his custody, and the collection of Mollusca, which Hugh Cuming had not considered worthy of a visit to Berlin, grew under his fostering care into what is now beyond doubt the most important in any of the Continental Museums. This growth was due not only to the incorporation in the Berlin Museum of celebrated collections like those of Albers, Dunker, and Pactel, or to the steadily increasing influx of materials from the newly-acquired German possessions, but also to his own efforts as a collector in many parts of Europe, and particularly in the Far East. In 1860 he joined as Naturalist the Prussian Expedition of the ship 'Thetis,' and accompanied it during the first two years of the voyage. For the two following years he explored independently, but with the consent and aid of the Prussian Government, the Fauna and especially the Mollusca of the Sunda Islands and Moluccas. The preparations for this long voyage, and his desire to become personally acquainted with the treasures of the Cumingian and other collections, brought him to England on a visit of several months' duration—the only visit which he paid to this country. His name, however, soon became familiar to English Malacologists through the excellent reports on Mollusca which he annually contributed for twenty years to the 'Record of Zoological Literature' founded by his friend Dr. Günther; the first appeared in 1865, less than a year after his return from the East.
With the completion of his masterly work on the zoological results of his voyage ("Die preussische Expedition nach Ost-Asien, Zoologie"), in 1879, his position as one of the foremost malacological authorities was firmly established. But although shells were his first, and remained his best love, his training, his wide and accurate knowledge, and his intimate acquaintance with zoological literature, enabled him to take up subjects from many different branches of zoology, and to treat of general questions, such as the distribution of animals, with a sense of responsibility which is often missed in the work of the compiler and even of the specialist.

The amount of work accomplished by Martens is truly astonishing. The arrangement and care of the collections in his custody must have occupied by far the greater part of the day; yet he found time for the preparation of some 200 papers for the press, for the systematic and detailed study of some important faunas, like the Land and Freshwater Mollusca of Central America, Venezuela, and German East Africa, the marine Fauna of Mauritius and the Seychelles, the mollusks collected by Max Weber and by the German Deep-sea Expedition, 1898-9, for the preparation of monographs of the genera Nerita, Neritina, and Navicella. The whole of this published work is characterized by painstaking accuracy, discipline of method, conservative principles, respect for classical form, and tolerance towards the views of others. His principal aim was the elucidation of facts.

Martens would have been satisfied, and would have felt himself amply rewarded by the general high esteem in which the world of science held him; but numerous honours succeeded each other in due course: the University of Rostock made him an honorary Doctor of Philosophy (1872), whilst the Berlin University placed him on the list of Extraordinary Professors (1873); the Prussian Government recognized his eminent services by bestowing upon him the title Geheimer Regierungsrath (1899). The Zoological Society elected him a Corresponding Member in 1865 and a Foreign Member in 1885; since 1899 he was one of the Foreign Members of the Linnean Society.

A wife and daughter mourn his loss. For his early friends he retained the most affectionate regard; to help his fellow-labourers was to him a pleasurable duty. A man without guile, he had no enemy.

[Alpheus Spring Packard, who died on 14th February, 1905, was born at Brunswick, Maine, U.S.A., on 19th February, 1839. He was inclined towards Natural History from his early youth, and after some preliminary studies in Bowdoin College, he joined a scientific expedition to Labrador and Greenland, where he laid the foundation of the broad views of nature which characterized all his work. Between 1861 and 1864, while occupied with a medical course at Harvard, Packard came under the influence of]
Louis Agassiz, whose inspiration led him to forsake applied science and devote himself entirely to the problems of geology and zoology. His early researches were mainly geological, and some of his most important results were eventually summarized in his book on 'The Labrador Coast' (1891). From 1869 onwards, however, Packard's publications were chiefly zoological, and his first important work was his memoir on the development and anatomy of *Limulus polyphemus* in 1871. He had already written a small 'Guide to the Study of Insects,' which met with great success; and after his appointment as State Entomologist of Massachusetts, in 1871, he rapidly became a leader in American Entomology. Between 1877 and 1882 he was a member of the United States Entomological Commission, and pursued important researches on the Rocky Mountain locust. For many years he was closely associated with the Peabody Academy of Science in Salem, where he directed a summer school of biology on the coast; and his final appointment was in 1875 to the Professorship of Zoology and Geology in Brown University, which he held until his death. Besides upwards of 300 smaller papers, he published his well-known monographs of Geometrid Moths (1876), the North American Phyllopod Crustacea (1883), the Cave-Fauna of North America (1888), and the Bombycine Moths of America (1895 and posthumous). He also prepared several valuable textbooks, among which may be specially mentioned the 'Life-History of Animals' (1876), 'Forest and Shade Tree Insects' (1888), and the 'Text-Book of Entomology' (1898). He was, moreover, an industrious editor, and for many years had charge of the 'American Naturalist,' of which he was a founder. Throughout all his researches, Packard felt the deepest interest in underlying principles, and soon became an ardent member of the Neo-Lamarckian school. His admiration for the work of Lamarck led him to devote his leisure for many years to the preparation of his last-published volume, 'Lamarck, the Founder of Evolution,' which appeared in 1901. His last journey to Europe, in 1900, was, indeed, specially planned to visit the home and haunts of Lamarck in France. His unassuming modesty, ripe scholarship, and quiet enthusiasm endeared Packard to all with whom he came in contact either as teacher or friend. He received many honours and tokens of esteem, and was elected a Foreign Member of the Linnean Society on 2nd May, 1901. [A. S. Woodward.]

William Paul, the well-known rosarian, of Waltham Cross, died there at Waltham House on 31st March, 1905, aged 82. Born in 1822, of Huguenot descent, his earliest volume, 'The Rose Garden,' was issued in 1848, and is now in its 10th edition; before this he had helped J. C. Loudon, after whose death, in 1843, he performed similar services for Dr. Lindley. From the foundation of the 'Gardeners' Chronicle' in 1841, under Lindley's editorship, down to a comparatively recent date, Mr. Paul constantly con-
tributed articles. In 1860, some years after his father's death, he founded the present Royal Nurseries at Waltham Cross. At a provincial show at Manchester, in 1860, he delivered a lecture in which he gave the results of his practice in "improving" parsley, Brussels sprouts, asters, and hollyhocks, as well as his roses; this lecture forms a part of his 'Contribution to Horticultural Literature' in 1892, mostly reprints of his papers. He possessed a good collection of horticultural and scientific works, and was well acquainted with the old writers on gardening and botany. He was elected a Fellow on 18th November, 1875; and although he rarely attended the evening meetings, he frequently made use of the library.

RUDOLF AMANDUS PHILIPPI, who died in the closing hours of 23rd July, 1904, was our oldest Foreign Member, though elected so recently as the 2nd May, 1895. He was born at Charlottenburg on 14th September, 1808, and received his early training, first four years at Yverdun, then at the Berlin Gymnasium zum Grauen Klosten; in 1825 he entered the High School as student of medicine, and attended the lectures of Mitscherlich, Link, Wiegmann, and Alexander von Humboldt, and took his degree in the spring of 1830, in his twenty-second year. To widen his knowledge, he travelled south to Naples and Marseilles, visiting the hospitals, and making acquaintance with various men of science. In the course of his travels he explored Sicily, crossing it repeatedly, and twice ascending Etna. He returned to Berlin in 1833, and set himself to work up the results of his journeys. He became Professor of Natural History and Geogrophy in the Gewerbeschule at Cassel in 1835, and was married in the same year to Anna Krumwiede, but his domestic happiness was soon disturbed by sickness. In the winter of 1836–37 he was attacked by influenza, a consequence of which was spitting of blood in the following summer, which obstinately resisted medical treatment in the severe climate of Northern Germany. Accordingly, in April 1838, he and his wife started for Italy by way of Bavaria, and they settled for a time in Naples, where his son Friedrich, afterwards so efficient a help to his father, was born. The pulmonary hemorrhage gradually ceased, and his strength returned; he was thus able to undertake a journey through Apulia, Calabria, and Sicily, to supplement his former observations. The homeward round was by Marseilles, Lyons, and Switzerland.

On his return to Cassel he busied himself in issuing his travels in Italy, and an extensive work on Mollusca, and some years passed by quietly. The stormy years of 1848 broke up this quietude, for though Philippi took no part in political movements, he found himself involved in the currents caused by strong passions working in a small society. At this juncture his younger brother Bernard begged him to come out to him in Chile, where a fresh opening for scientific work had recently been made. After the suppression
of the Revolution came the reaction, and seeing no prospect of early amelioration of his prospects, he sent in his resignation as Director of the Gewerbeschule, which was accepted 3rd January, 1851.

He embarked on the brig 'Bonito' at Hamburg, and after a voyage of 130 days reached Valparaiso on 4th December, 1851; early the next year he continued his journey to Valdivia. During the long voyage he had been busy on a volume of Conchology, which he brought to a conclusion when in the neighbourhood of Cape Horn. At first, his prospects were not brilliant, the Republic was torn by civil war, his brother's estate was in utter confusion, and, to crown all, Bernard Philippi, at that time Governor of the Maghellenes, was murdered by the Patagonians.

In spite of these hindrances, R. A. Philippi found himself in a rich place for collections of all kinds; he climbed the volcano Osorno, and thence obtained his first peep at the vegetation of the Southern Cordilleras. He reported his travels to the University at Santiago, and shortly afterwards, in October 1853, he was called to that university as Professor of Natural History and Director of the National Museum, the beginning of a residence there which exceeded half a century. He had scarcely taken up his duties in Santiago, when he was commissioned to travel over and report upon the desert of Atacama; in this expedition he was the leader, and his special share was to observe the vegetation of that high and little-known region. He published his new species in the volumes of 'Linnæa' from 1857 to 1864, but the official account of his journey was issued in 1860, as 'Reise durch die Wüste Atacama,' in German and Spanish; an appendix formed part, entitled 'Florula Atacamensis, seu Enumeratio Plantarum quas in itinere per Desertum Atacamense observavit R. A. Philippi. Halis, 1860,' a quarto volume of 62 pages and 6 plates. During the following years he was fully occupied in superintending the Museum, lecturing and travelling on behalf of the Government. In 1874 he resigned his Professorship, and in 1897 he quitted his post at the Museum in favour of his son Friedrich. His botanic publications amount to 98, the latest dated 1901; his zoological publications on Mollusca, Coleoptera, Birds, and Fishes, recent and fossil, are probably as many. Most of his detached botanic papers were printed in German journals or the 'Anales' of the Santiago University; during the last ten years of his authorship, he described many plants, which later botanists consider as forms rather than species, a fault apt to be committed by naturalists who have been restricted in their range, unchecked by reference to large and world-wide collections. His health remained good to a very advanced age, though hearing and sight became affected. He outlived his wife and seven of his nine children; in his adopted country he occupied an honoured station apart from all others, and his decease last year has been followed by two biographies, from which a condensed account was drawn up by Dr. K. Reiche, in the
The name of the Rev. Thomas Arthur Preston is familiar to many by his work for phenology, the observation of the dates of the seasonal appearance or disappearance of certain selected plants and animals. He was born at Little Dean's Yard, Westminster, on October 10th, 1833, his father being one of the masters at Westminster School, and took part in the founding of the Athenæum Club in 1824. Our late Fellow held two scholarships at Emmanuel College, Cambridge, was bracketed 20th Wrangler in 1856, and in 1857 headed the first division in the Natural Sciences Tripos, with distinction in Botany and Mineralogy. He proceeded M.A. in 1859, but the year before he was ordained deacon at Salisbury, and one year later, priest at the same Cathedral. On taking holy orders, he became Assistant Master at Marlborough College, and from 1858 to 1873 he took a form in the Lower School; from 1873 to 1885 he was House-Master and taught a Mathematical Class. Familiar with the neighbourhood of Cambridge, he at first sight thought the Wiltshire surrounding of the College little other than a desert. But a better acquaintance with the available ground for exploration modified his view, and he found scope for his observations in plants and geology, soon inducing others to join him in these observations. After five years' residence he brought out his 'Flora of Marlborough, with notices of the birds, and a sketch of the geological features of the neighbourhood'; a handy volume of 130 pages, modelled on the then recently issued 'Flora of Cambridgeshire,' by Professor C. C. Babington. He was the founder and for sixteen years President of the School Natural History Society, which has just issued its 53rd Report.

In 1875, in conjunction with others, he issued a small 'Instructions for the observation of Phenological Phenomena,' and two years later, his 'Notes for observations of Injurious Insects.' Early in 1883, Drs. Hoffmann and Egon Ihne were in correspondence with the present writer, and the sequel was that in three successive numbers of the 'Botanical Journal' (Nos. 125–127), vol. 20, an appeal to observers was translated and printed on the wrappers of those numbers, with a list of the plants observed with their average dates. Mr. Preston supported this appeal whole-heartedly; it is now officially recognized as part of the work of the Royal Meteorological Society, and local societies are engaged in recording and averaging dates. Shortly before this, he had set on foot a series of small annual volumes on the Rainfall of Wiltshire, 1882–86, the last being published after he had quitted his position at Marlborough in 1885, for the Rectory of Thurcaston, Leicestershire, which he retained during the remainder of his life. 'The Flowering Plants of Wilts' was issued at Leicester in 1888; it was based on his notes during 27 years' residence in that county. He caused
Twenty years’ observations on Botany, Entomology, Ornithology, and Meteorology, taken at Marlborough College, 1864–84, to be issued by the College Natural History Society, whose reports began in 1865, under Mr. Preston’s guidance.

He died at Thurcaston, 6th February, 1905. The last work undertaken by him was a Flora of Leicestershire, which, it is announced, will be completed by a friend and competent successor.

A former pupil writes:—“I remember that he was exceedingly kind to us boys, who learned from him so much about the zoology, botany, and geology of the Marlborough neighbourhood. He was a most careful observer and taught his pupils to record in a proper way everything that was noteworthy. He started a botanic garden after I left Marlborough. He was constantly arranging excursions, also lectures and discussions in his room in the evenings.”

A former colleague states:—“Not a master of the ordinary type, which compels immediate attention and commands popularity, not a great Form- or Housemaster, or athlete, yet in his own subjects and in his own way, his powers of originating and organizing, of stimulating and permanently influencing, mark him out as one of the leading spirits, and one of the truest benefactors of Marlborough College... His own enthusiasm was catching. Little bands of followers attended him armed with hammers, butterfly nets, moth boxes, and botany tins. His room a little before bedtime was a notable sight. Hither were brought the miscellaneous spoils of a half-holiday raid: flowers with the prospect of a ‘first notice,’ butterflies, flints, coins, all to be identified and discussed by the Master. Later in the sixties... Mr. Preston gave some excellent courses of lectures on botany, zoology, comparative anatomy, and physiology. This was a step in advance of the time, for Science Masters and Laboratories had not then been introduced. They were capital lectures, very stimulating, questions being asked and answered. The lecturer’s munificence was shown here as in all his other work, fine specimens and beautiful instruments being freely provided... The Natural History Society did not, as was dreaded, injure games. The Society has long been an essential part of the school life, but it was a novel thing in the sixties, the first of its kind in the Public Schools of England, and those who appreciate the interest and the refreshment which it affords to minds somewhat jaded with cricket, and iambics, and essays, and turned lessons, the pure delight of a field-day’s outing with its al fresco meals on grass or in barn, will surely bless the memory of the founder. Not a few famous scientific men have drawn inspiration from the Natural History Society.”

On leaving Marlborough a crowded meeting presented him with a farewell address, which embodies much that has been set out above.

“Mr. Preston held the living of Thurcaston for over 19 years. He found it heavily encumbered, he left it free... His scientific
fame had preceded him; he rearranged the Botanical Section of
the Leicester Museum... and assisted the scientific and phi-
osophical societies of the town... In the last few months Mr.
Preston suffered from a distressing complaint, which he bore with
great courage and patience. He was a man of strong and simple
Christian faith, a devoted brother, a fast friend, genuine as pure
gold, and singularly modest."

The writer has to thank J. F. Duthie, Esq., F.L.S., Edward
Meyrick, Esq., F.R.S., F. E. Thompson, Esq., and Miss Preston,
for their invaluable help in drawing up the foregoing obituary.

[B. D. J.]

BERNARD RENAUT was born at Autun on March 4th, 1836.
During the early part of his scientific career his attention was
devoted to Physics and Chemistry, to which he made some original
contributions. It was in these sciences that he took his degree at
Paris in 1867, and he then filled an official post as chemist in the
Normal School of Cluny. But his life's work was destined to take
a different course. The neighbourhood of his native place, Autun,
is peculiarly rich in silicified remains of plants, of Permo-Carbon-
iferous age, and Renault soon became interested in these specimens,
and began to investigate their structure. He at once found him-
self on the road to important discoveries. Starting with the
anatomy of fossil Ferns of the genera Anachoropteris, Zygopteris,
and Botryopteris, he was led to found the new family Botryopteridae,
based not merely on vegetative characters, but on a detailed
knowledge of the fructification in two of the genera.

Another early work of the highest value is his investigation of
the structure of the remarkable genus Sphenophyllum, representing
a group now wholly extinct, unless indeed, as some have lately
maintained, the Psilotaceae are to be included in the same division.
He further elucidated the structure of fossil members of the
Equisetales by his investigation of the anatomical and reproductive
characters of Annularia.

The striking results which Renault was attaining in Fossil
Botany soon attracted the attention of Adolphe Brongniart, the
great master of that science, who summoned him to Paris, where
he obtained the post of Assistant Naturalist at the Museum of
Natural History. This modest appointment he continued to hold
to the close of his life. Unfortunately, the efforts which were
made to create for him a position more worthy of his eminent
merits remained without result.

The work in which Brongniart specially desired the co-operation
of his younger colleague was the investigation of silicified seeds, a
subject which has proved of the utmost importance to morpho-
logical Botany. Renault was always careful to compare fossil with
analogous recent structures; and in the course of his work on the
seed, he re-discovered the pollen-chamber of Cycads, in ignorance
of the fact, long overlooked, that Griffith had already described and figured this organ, more than 20 years before. Renault had an important share in the preparation of the splendid volume on Silicified Seeds, published posthumously in Brongniart's name.

It was only for a short time that Renault delivered regular courses of lectures on Fossil Botany, but his teaching work bore permanent fruit in the publication of his famous 'Cours de Botanique Fossile,' in four volumes, 1881–85, by far the most important general work on the subject up to that time, and still an invaluable storehouse of facts, based almost wholly on original observation.

A somewhat earlier and more special work, the 'Structure comparée de quelques Tiges de la Flore Carbonifère,' 1879, had prepared the way; for in this memoir, among many other researches of importance, he published his complete account of all the organs of the extinct Gymnospermous family Cordaitae—perhaps the greatest contribution which he, or any botanist before him, had made to our knowledge of the plants of the past. It may be mentioned that Renault, in observing the structure of the pollen-grains within the pollen-chamber of Cordaitean and other fossil seeds, was led to anticipate the discovery of Ikeno and Hirase, suggesting the probability that in plants of this group fertilization took place by means of spermatozoids.

Renault's work on the higher plants of the Palæozoic Period was crowned by the completion, in 1896, of the magnificent 'Flore Fossile d'Autun et d'Epinac,' of which the first volume is the work of Zeiller, and the second that of Renault. This was in many respects his finest work, and the series of more than 60 plates, by which the volume is illustrated, is a worthy monument of the mass of detailed research which the text contains.

Renault was much engaged in controversy, more especially with our own distinguished countryman, Williamson. They differed principally on the question of the affinities of the Sigillariæae and Calamodendrae; families which Williamson regarded as essentially Cryptogamic, belonging to the Lycopodinean and Equisetinean series respectively, while Renault, following Brongniart, was led to place them among Gymnospermous Phanerogams, relying, to a great extent on the fact that these plants developed secondary wood, like Phanerogamic trees. The result has justified the opinion of Williamson rather than that of his great French rival; but it has been well pointed out, that even if wrong in detail, Renault and the French school represented by him deserve great credit for having realized that among related plants, some might be on one side, some on the other, of the ideal Phanerogamic-Cryptogamic boundary. Recent work on other groups has abundantly justified Renault's point of view.

During the last ten years of his life Renault allowed himself to be to a great extent diverted from the important studies on which
his reputation rests, to work of perhaps a less assured value, on the micro-organisms of the Carboniferous Period. Though to the popular mind researches on fossil Bacteria and their action may seem of fascinating interest, it may be doubted whether such investigations can ever lead to results sufficiently definite to repay the immense labour which they demand.

Renault never received in his own country the official recognition which his great work in a new field merited; it is the more satisfactory to us that his English colleagues did him such honour as lay in their power. He was elected a Foreign Member of our Society 5th May, 1898, and of the Royal Microscopical Society in 1904, only a few months before his death, which took place on 16th October of that year.

[D. H. Scott.]

Alfred Sanders, M.R.C.S., was born 29th April, 1834, and died 14th February, 1905. He was elected a Fellow of the Linnean and Zoological Societies in 1863, and from about this time, having abandoned the practice of medicine, he devoted himself to a special branch of natural history. Among papers contributed to various societies, his principal essays were those which appeared in the 'Phil. Trans.' between the years 1879 and 1886, entitled "Contributions to the Anatomy of the central nervous system in Vertebrate Animals," of which parts 1 and 2 referred to the Teleostei, part 3 to the Plagiostomi, a fourth paper treating similarly of Ceratodus Forsteri in the Dipnoi. From yet another group of fishes, the Cyclo stomi, Myxine glutinosa furnished him with the subject for a treatise published independently, and accompanied by a very long list of the authorities who have been attracted to discuss the unattractive personality of that worm-like fish.

Mr. Sanders is remembered at the Linnean Society as a man of amiable, retiring character, but also as somewhat over-sensitive, the latter attitude of his mind displaying itself elsewhere as well as here. For instance, it appears that on one occasion he put up under excellent auspices for the Fellowship of the Royal Society, but not being at once elected he withdrew his name in a kind of resentful modesty, which really had its root in a misapprehension. He failed to perceive that an unlimited number of candidates for a limited number of vacancies cannot be sure of election at the first time of asking, however worthy of it they all may be. Whatever his disappointments, however, there is no reason for thinking that his life on the whole was other than a quietly happy one. His wife writes that he combined the pleasure of travelling with his search for the materials of his study. He went to the Nile for Ceratodus, to America for the blind fish of the Caves of Kentucky, and visited Australia, Japan, and various other places with similar objects in view.

[T. R. R. S.]
JOHN CHARLES SAWER was elected Fellow of this Society on the 21st April, 1881, and died at Brighton on 23rd August, 1904. He brought out a small volume entitled 'Rhodologia; a discourse on Roses and the odour of Roses,' Brighton, 1894, and his various contributions to our knowledge of perfumes and perfume-bearing plants were issued in various journals.

B. D. J.

STEPHEN WILLIAM SILVER.—Among the Fellows whose deaths it is our melancholy duty to record is the late Mr. S. W. Silver, who passed away, after a brief illness, at his beautiful country seat at Letcomb Regis, near Wantage, on April 7th, 1905. He had been confined to his house at York Gate, in London, by a severe cold for several weeks, but having apparently thrown it off, he was permitted by his medical attendant to return to the Manor House, where he suffered a relapse to which he finally succumbed at the age of eighty-five, having retained his energies and faculties unimpaired almost to the very last.

The late Mr. Silver was a many-sided man, and for a long succession of years had taken an active part in many capacities. In 1846 he had succeeded to the management of the export and banking business founded by his father long before. This business brought him into touch with prominent men in all parts of the Empire. He took a special interest in the Colonies, and promoted their development by the publication of a series of Handbooks, which became everywhere popular. He was, furthermore, the proprietor for many years of a weekly newspaper called the 'Colonies and India.'

He took an active personal interest in all movements of a philanthropic and charitable kind. For some five-and-twenty years he was a member of the British and Foreign Bible Society, and of late years served on the Council. His annual garden party at Letcomb Regis in aid of this institution, which was a recurrent event for many years, will not soon be forgotten by those who were privileged to be present. He was, for close on fifty years, a Fellow of the Royal Geographical Society, and was over and over again elected to the Council of that body, where his business experience proved of great service. For some thirty-three years he was a Fellow of the Linnean Society, in whose operations he always manifested a very lively interest. He was also an energetic member of the Royal Botanic Society and of the Royal Colonial Institute.

After giving up active business in the City, Mr. Silver continued to be Chairman of the India-rubber and Telegraph Company, in which he had a considerable financial interest, the works of that Company being at Silvertown. He was a Deputy-Lieutenant of the City of London, a Past-Master of the Ironmongers' Company, a Director of the London Life Association, a Governor of St. Thomas's Hospital; also of St. Bartholomew's and Bridewell Hospitals. He was always a friend to geographical
explorers, and was, in his day, on terms of intimacy with such men as Livingstone, Sir Samuel Baker, and Mr. Selous. His invaluable geographical and scientific library at York Gate has, for many years, been frequented by the student, the main object of its owner being to disseminate useful information. In Colonial literature his library has long been famous.

Mr. Silver always took a leading hand in promoting Colonial Exhibitions and similar undertakings. He was the possessor of some unique specimens—such as the wonderful Frost-fish of New Zealand—and these were always readily lent on such occasions.

With the view of stimulating and promoting the education of the youth in his neighbourhood, he established a most interesting little Natural History Museum at his own home, erecting a building for its accommodation. His collection of New Zealand birds (a catalogue of which, prepared by Sir Walter Buller, was published sixteen or seventeen years ago) is one of the most perfect in this country.

Following up his interest in our Colonial dependencies, Mr. Silver, about the year 1879, purchased a beautiful estate in New Zealand—in the interior of the Wellington Province, now known as Silverhope, where for many years he expended large sums of money in improvements.

A good Christian man, kind and unostentatious, always ready with advice and money to help the deserving, a liberal donor to all charities, and a hospitable landlord, he leaves behind him many friends and admirers, both here and abroad. [W. L. Buller.]

Rev. Francis Augustus Walker, D.D., who died at his residence at Cricklewood, 31st January, 1905, came of a family long connected with this Society: his grandfather, John Walker, was Fellow from 1806 to 1824; his father, Francis Walker, the entomologist, was elected in 1832, and withdrew in 1872; and the subject of the present notice was elected Fellow 21st December, 1871. Thus for ninety-nine years, with one break of eight years, the family has been represented in the Society.

From school our late Fellow went up to Christ Church, Oxford, graduating B.A. in 1864, M.A. in 1867, B.D. in 1879, D.D. in 1888. He held several curacies in London and in the country, and a country rectory in Cambridgeshire, but in 1890 he came to live in the north-western suburb of London in which he ended his days. In 1889 he paid a visit to Iceland, collecting both plants and insects; of the former he made an exhibition on 21st November, 1889, at one of our meetings, Mr. Arthur Bennett having critically examined the collection and reporting that four were new, two were introduced species, and two were confirmations of earlier collectors (Proc. Linn. Soc. 1889–90, pp. 68, 101). The insects had been collected on so lavish a scale, that some criticism was called forth on the subject of taking so many specimens of the same species. In June 1899, Dr. Walker offered
his collections to the Society, but the Council were compelled, in conformity with the policy inaugurated forty years before, to decline accepting them. In addition to insects these collections consisted of shells, arranged geographically.

'Dr. Walker was a Fellow of the Entomological Society, which he joined in 1870, the year before he was elected into the Linnean Society. [B. D. J.]

June 1st, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the Anniversary Meeting of the 24th May were read and confirmed.

The President announced that he had appointed Mr. Frank Crisp, Mr. Charles Baron Clarke, Mr. Horace W. Monckton, and Dr. A. Smith Woodward to be Vice-Presidents for the ensuing year.

Mr. Arthur James Dicks was admitted a Fellow.

The Rev. William Jenkins Webb Anderson, Mr. Edward Russell Burdon, Miss Kate Marion Hall, Mr. Frederick William Lucas, and Mr. Hugh Fraser Macmillan, were severally balloted for and elected Fellows.

Mr. Jesse Reeves was proposed as a Fellow.

Two letters received from Prof. E. Strasburger, of Bonn, conveying his thanks for and appreciation of the Linnean Medal awarded at the Anniversary, and forwarded through Sir Dietrich Brandis, K.C.I.E., were read by order of Council (see pp. 31, 32).

Mr. H. E. H. Smedley, F.L.S., exhibited models of restorations of some extinct Dinosaurs, Ceratosaurus, and Diplodocus, also of Ichthyosaurus, Plesiosaurus, Scelidosaurus, and Stegosaurus. After the President had opened the discussion, Dr. A. Smith Woodward remarked that many of these restorations must still be considered hypothetical, for whilst the material for a reconstruction of the Ichthyosaurus was abundant enough to show the nature of its covering, in others we were still without accurate knowledge, even of the position assumed by the animals during life; the Plesiosaurus, it is now known, could not possibly have displayed the swan-like neck depicted, as its cervical vertebrae did not permit of sufficient movement. Dr. C. W. Andrews (a visitor) and the Rev. T. R. R. Stebbing also contributed remarks, and Mr. Smedley replied.

The General Secretary showed two photographs and read a letter from Mr. John F. Waby, F.L.S., with regard to the palms mentioned as follows in the 'Proceedings' of 18th June, 1903:—

"A photograph sent by Mr. J. Waby was shown and an extract from his letter was read, stating that two specimens of
Corypha elata in the Georgetown Botanic Gardens, of similar age and planting, were photographed: one had followed the normal course, flowered, fruited, and died; the other, instead of flowering, had developed a secondary crown of leaves." (Proc. Linn. Soc. 1902-03, p. 41.)

The photographs now shown were in continuation of this. Mr. Waby writes:—"I am able now to give you the sequel to the account of the Corypha elata which produced the abnormal growth, and of which I sent you a photograph in the first stage. I enclose two other photographs of two further stages which I promised you last May, and the details which I have gathered on felling the palm. It was cut down on the 3rd of April. It was impossible to obtain these details before cutting it down on account of its great height. Its various dimensions are:—

- Height over all 68 feet.
- Diameter at base 3 feet 6 inches.
- Middle 2 feet 3 inches.
- Top 1 foot 10 inches, this at the base of the secondary growth.

"The secondary growth occupied a space of 4 feet. Height of the spadix from the secondary growth, 20 feet; 5 feet of this being bare stem—the remaining 15 feet crowded with huge branches, which numbered 29.

"The length of the lower branches was 9 feet 6 inches. All leaves of the original stem had fallen long since, leaving it bare for 44 feet. The leaves of the secondary growth remaining on, quite dry.

"In the 4 feet length of the secondary growth, arranged in 3 spirals, were 25 flowering branches springing from the axils of the leaves, each one a separate spadix, with numerous spathes attached at the base. Only 3 were perfect; these were 12 feet long, having a few small branches at the ends bearing fruit, the others were abortive, ranging from 2 to 6 feet in length, without branches. The crop of fruit weighed 1100 lbs. and numbered over 51,000.

"The plant was just 25 years old. In over 30 years tropical experience I have seen seven of these giants go through their life's course, besides two of the 'Talipot,' and this is the only one which has shown anything out of the ordinary course."

Mr. C. B. Clarke remarked that though this palm grew in the Calcutta Botanic Garden, he had never noticed this abnormal behaviour, though branching in palms occurred in many species.

The General Secretary exhibited sundry rarities from the books and manuscripts of Linnaeus, especially three which had been lost sight of owing to their having been placed amongst the manuscripts which remained unbound. Each exhibit was explained, with the circumstances attending its production, and its special interest indicated.

The President remarked that in spite of what had been done in
bringing to light certain items in the collections of Linnaeus, doubtless much yet remained to be discovered, and instanced the fact of his exhibiting the artificially produced pearls from the Linnean Cabinets. He suggested that possibly among the Linnean manuscripts there might yet exist some documents still unutilized which would throw light upon the procedure adopted by Linnaeus as regards pearl-mussels.

The following paper was read:

June 15th, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 1st June were read and confirmed.

Mr. Frederick William Lucas, the Rev. William Jenkins Webb Anderson, and Miss Kate Marion Hall were admitted Fellows.

The Rev. John Gerard, S.J., F.L.S., exhibited a series of lantern-slides of Arum maculatum, in disproof of the statements of Hermann Mueller and others as to the fertilization of this plant by small flies, pointing out that these flies were not imprisoned by the abortive hair-like organs above the stamens, but that these visitants became stupefied by the nectar afforded by the ovaries, and were digested by the plant.

The Rev. T. R. R. Stebbing, Mr. Henry Groves, and the President joined in a brief discussion.

The following papers were read:

1. "Biscayan Plankton.—Part VI. The Colloid Radiolaria." By Dr. R. N. Wolfenden, F.L.S.
2. "Biscayan Plankton.—Part VII. The Mollusca (except Cephalopoda)." By Prof. Paul Pelseneer. (Communicated by Dr. G. H. Fowler, F.L.S.)
4. "On some Remarkable Indian Undershrubs." By the same.
5. "Note on a Skeleton of the Musk-Duck, Biziura lobata, with Special Reference to Skeletal Characters acquired by Adaptation." By W. P. Pyerait, A.L.S.
ABSTRACTS.

Abstract of Prof. Vines's discourse on Proteid Digestion in Animals and Plants; read 1st December, 1904.

The foundation of our knowledge of gastric digestion in animals was laid by van Helmont as long ago as early in the 17th century (Ortus Medicus, 1648), who held that it was effected by an "acid ferment." But in spite of continued research by Réaumur, Stevens, Spallanzani, and others, it was not until two hundred years later that the ferment was actually detected. This important discovery was made in 1836 by the celebrated Schwann, who gave to the ferment the name "pepsin."

In the course of subsequent investigation, it came to be recognised that the digestion of the food is not by any means completed in the stomach, but that the greater part of the digestive process is carried on in the small intestine (duodenum) by the pancreatic secretion. Claude Bernard ascertained in 1856 that the pancreatic juice contains a ferment that digests proteids; to this ferment the name "trypsin" was given by Köhne in 1876.

These two proteid-enzymes, or proteases, pepsin and trypsin, were found to differ as well in the conditions of their activity as in the products. Pepsin acts only in an acid liquid, whereas trypsin is most active in an alkaline liquid. Both proteases decompose, by hydrolysis, the higher proteids, such as albumin and fibrin, into others of simpler constitution which Lehmann (1850) termed "peptones"; but it has since been shown that under this term were included two classes of substances known as "albumoses" and peptones proper. Although there has been a good deal of discussion on the point, it may be regarded as established that the action of pepsin goes no further than this: that it is, in fact, a merely peptonising protease. It is, however, well-known that the action of trypsin is more far-reaching, going on to the decomposition of a portion, at least, of the peptone into non-proteid, crystallisable, nitrogenous bodies belonging to what are now known as the groups of amido-acids (e. g., leucin, tyrosin, tryptophane, etc.) and hexon-bases (e. g. arginin, lysin, and histidin). Trypsin not only peptonises the higher proteids, but also decomposes, or peptolyses, albumoses and peptones.

These two were the only proteases known until quite recently (1901); a new protease, termed "erepsin" by Cohnheim its discoverer, was added to the list. Like trypsin, this protease peptolyses peptones, and is active in alkaline liquids; but its peptonising power is much less marked, as it is without action on albumin and fibrin, though it can peptonise casein.

The discovery of erepsin suggested the possibility that trypsin might be, not a single enzyme, as had hitherto been thought, but a mixture of enzymes; possibly of peptonising with peptolysing
enzymes. Research in this direction has, in the hands of Dr. Vernon, already (1908) shown that what is generally known as trypsin is a mixture of erepsin (pancreato-erepsin) with what may be termed trypsin proper. It is not inconceivable that analysis may be carried still further, and that trypsin proper may itself be found to be a mixture of a peptonis with a peptonising enzyme.

I now turn to proteid-digestion in plants. The study of this subject may be said to date from the publication, in 1875, of Darwin's 'Insectivorous Plants,' where an account is given of digestion-experiments with Drosera, Dionaea, Nepenthes, etc. This was accompanied, almost simultaneously, by the discovery (von Gorup-Besanez, '74) of the presence of proteases in germinating seeds; and a number of similar discoveries gradually followed—in Myxomycetes (Krukenberg, '79), the Papaw (Wurtz, '79), the Fig (Bouchut, '80), Moulds (Bourquelot, '83), Bacteria (Bitter, '87), Pine-apple (Marcano, '91), Yeast (Salkowski, '89), Mushrooms, etc. (Hjort, '97). My own contribution, made within the last three years, consists of a number of observations on many different plants or parts of plants, showing that a protease of some kind is probably to be found in all parts of all plants at one stage or other of their development.

But now, as to the nature of the vegetable proteases. At first it was thought that the protease was a pepsin, since it was active in acid liquid; but from the time of Wurtz's researches on papain, when the investigation of the products of digestion became more thorough, opinion gradually changed to the view that the protease was allied to trypsin. As a matter of fact, peptonisation has never been found to take place under normal conditions without peptolysis. Hence there is no evidence of the independent existence in plants of a purely peptonising protease allied to pepsin; if such a protease exists at all, it exists in admixture with some peptolyzing enzyme.

Some progress was made towards a comprehension of vegetable proteolysis when I discovered—almost simultaneously with Cohnheim's discovery of it in the intestine of animals—that a protease of the nature of erepsin is very generally present in plants. One important point that I succeeded in establishing was this—that many plant-juices or extracts can peptolyse, but cannot digest the higher proteids, so that clearly erepsin occurs independently in these cases. The present state of knowledge is that whereas all plants that have been investigated can effect peptolysis, only a limited number have been found capable of digesting fibrin: the plants enumerated above all digest fibrin, and to that list I may add the following: the fruit of the Kachri Gourd (Cucumis Melo var. utilissimus), discovered by Professor Green ('92); also various other gourds discovered by me (Melon, Cucumber, Vegetable Marrow); the etiolated shoots of Asparagus; the bulbs of the Hyacinth and the Tulip; and the leaves of
Phytolacca decandra, the only foliage-leaves that I have yet found, out of a large number of plants tried, to digest fibrin.

I may perhaps digress for a moment to explain that the wide distribution of proteases in the plant-body is now being paralleled by the discovery of a similar distribution in the animal body. Until comparatively recently it was thought that the proteases were confined to the alimentary canal of animals. But since 1890, thanks to the researches of Salkowsky, Jacoby, Hedin, and others, it has been gradually ascertained that a proteolytic enzyme is to be found generally in the tissues; an enzyme that resembles trypsin in its digestive activity, but differs from it in being more active in acid (0·1 per cent. HCl) than in neutral or alkaline liquids; this protease may be distinguished as "tissue-trypsin." But the most recent and, from the present point of view, the most interesting discovery in this direction is that made by Vernon, that an erepsin can be readily extracted from the various tissues of both vertebrate and invertebrate animals. Though his paper has not yet been published, I have the author's permission to make brief mention of his results on this occasion. In the Mammalia this "tissue-erepsin," as the protease may be designated, closely resembles in its properties the intestinal erepsin, "entero-erepsin," discovered by Cohnheim, more especially in requiring an alkaline medium. But the investigation of certain lower Vertebrates (Pigeon, Frog, Eel) and Invertebrates (Lobster, Anodon) has shown that in the latter cases an acid medium is less prejudicial than in the former to the action of the protease. These results demonstrate not only the fact of the essential similarity of distribution of erepsin in the tissues of animals and of plants, but also indicate a gradual convergence in the properties of the erepsins; so that it is not too much to anticipate the discovery of animals possessing an erepsin which, like that of plants, is more especially adapted for action in an acid medium.

But I must return to the consideration of the nature of the vegetable proteases, and more especially of the fibrin-digesting proteases. In endeavouring to solve this problem, I have ascertained that in certain cases (Yeast, Mushroom) the tissues contain a mixture of erepsin with a fibrin-digesting enzyme, a result which finds its analogue in Vernon's researches on pancreatic trypsin. But I have not succeeded in determining the nature of this fibrin-digesting enzyme, in deciding whether it is a pepsin or a trypsin, because there is no method by which all the erepsin can be certainly removed from the mixture so as to leave the other enzyme isolated.

However, I have recently made some observations in another direction which, though not yet conclusive, at any rate indicate a method by which a physiological analysis of a suspected mixture of proteases may be attempted. In investigating the somewhat debated digestive properties of papain, it was necessary, as in all experiments of this kind, to use an antiseptic. I tried various
antiseptics, such as toluol, prussic acid, and sodium fluoride, with the result that whilst in certain experiments both fibrin-digestion and peptolysis (of Witte-peptone) took place, in others peptolysis was effected without fibrin-digestion or vice-versa. The latter result is susceptible of two explanations: it may indicate the presence of a single protease of the nature of trypsin, of which either the peptonising or the peptolytic activity was paralysed by the antiseptic; or it may indicate the presence of two proteases—the one peptonising and of the nature of pepsin; the other peptolytic, an erepsin; the one having been paralysed by the antiseptic, but not the other. Of these two alternatives, the first would seem to be less probable; for it is natural to suppose that if a single protease were prejudicially affected, all forms of its activity would suffer equally. If the second alternative prove to be well-founded, it will be of exceptional interest; for, in that case, these observations will have demonstrated, for the first time, the presence of a peptic protease in plants. Not only so, but it will also point the way to the solution of the problem as to the nature of the trypsin of animals, which may be thus shown to consist, as I have already suggested, of a mixture of pepsin with erepsin.

Although my own investigations have been confined to plants, I have found it necessary to include the digestive processes of animals in my remarks this evening: not only because the progress of discovery in plants has been necessarily based for the most part on the earlier discoveries in animals, but chiefly because the processes are essentially the same in all living organisms, so that the subject can only be intelligently dealt with as a whole. It is safe to prophesy that, as investigation is extended more comprehensively to the digestive processes of the lower animals, the more manifest will this truth become.

Abstract of Dr. Augustine Henry's discourse on Botanical Collecting; read 19th January, 1905.

The actual methods were briefly alluded to, stress being laid on truthful labelling of the specimens at the moment of collection, instead of months afterwards, when identical numbers were often given to plants of different provenance. With the aid of nearly 50 lantern-slides, he showed his travels in China, demonstrating that the popular idea of that country as one vast rice-field was fallacious, as it mainly consisted of vast mountain-ranges cut up by deep valleys. In some of the slides the home of the wild forms of the Chrysanthemum, Primula sinensis, etc., were shown; and the lecturer alluded to the early history of horticulture in China, stating that the first botanical garden there was made 111 B.C. in Shensi, plants from subtropical regions, as the Banana, Areca Palm, and Orange, being introduced. Other slides showed typical forms of subtropical deciduous and evergreen trees; and the occurrence of epiphytes and lianas in vast numbers was mentioned.
Dr. Henry said that the text-book statement that epiphytes of higher types than ferns do not occur in Europe is too sweeping; as in the moist warm climate of Ireland, _Cotyledon Umbilicus_ in Wicklow covers the trunk and branches of the Alder, while Rhododendrons in two cases were seen by him growing on the bark of _Pinus sylvestris_; and _Pyrus Aucuparia_ seems to be a true epiphyte in various parts of Scotland and Wales. Dr. Henry alluded to "mimicry" in plants, in the case of two species of _Lysimachia_ (a protomorphid genus in China), one of which mimicked _Paris quadrifolia_, with 4 leaves, while the other recalled another species of _Paris_ with 10–12 leaves. He referred also to the extraordinary richness of species on calcareous soils as compared with other soils, a fact constantly seen in China, and well marked also in France; and asked for some explanation. In China, as elsewhere, pure woods were rare, being only formed by a few conifers, like _Abies Fargesii_ at high altitudes in Hupeh, _Cupressus funebris_ in the same province at lower levels (the home of the Reeves's Pheasant), _Pinus Massoniana_ (almost everywhere in the Central and Southern provinces), other species of _Pinus_ more local; also certain species of Oak widely distributed; and _Ailanthus nepalensis_ in Yunnan. The explanation of the occurrence of pure forests was also a subject not completely understood: _e.g._ in this country Ash seeded freely, and in some places for a time looked as if it would grow into a pure wood, but apparently pure forests of Ash only occurred on extremely rich soil in some districts in Russia.

With regard to botanical collecting, three stages had occurred. At an early period plants were collected to be merely named and classified; in fact they were treated like postage stamps. The second period began with Sir Joseph Hooker, who inaugurated the study of the geographical distribution of plants. The third period, that of the present day, was a step forward, in that attention should be paid to the plants themselves as social organisms, living in harmony and yet in competition together; and Dr. Henry urged that the time had come, when the hunt for new species should cease to be the sole aim of the collector, and the study of the known species be taken in hand in their living conditions. He advocated map-making of small areas, censusing, measurements, records of natural seedlings, soil, shade, etc., etc.; and to illustrate this plan, showed a series of slides taken in France, the idea of which was to explain how the commoner species of trees behaved at different altitudes and on different soils. These slides included Beech, Spruce, _Pinus Cembra_, _Pinus montana_ (which, according to Dr. Henry, often attains 80 feet in height and thrives on peat-mosses and on rocky soil, so thick with boulders that practically no vegetation existed except this hardy Pine), Larch, _Quercus sessiliflora_ and _pedunculata_. He pointed out that these two species differed as to soil and situation, and complained that their areas had never been mapped out in
England. The causes favouring the existence of the two very different forms of the common Birch were unknown, yet in Scotland this problem could easily be attacked.

The systematic botanists had only asked from collectors specimens with leaves, flowers, and fruit: material to be named and classified. Yet in trees and shrubs, the winter stages were of extreme interest, also the seedling stage. Elm seedlings and seedlings showing the difference between the two common Oaks were not to be found in the national Herbaria, and are not described in books.

Dr. Henry also referred to the small amount of work that had been done in regard to peat-mosses, and the great importance of studying the ancient forests, of which these mosses were—to put it broadly—the ruins. He mentioned extraordinary growth of trees in deep peat-mosses of the present day, as Alder averaging 95 feet; even the Oak also occurred.

Owing to the small amount of attention that had been paid to scientific forestry in this country, trees had met with scanty recognition from the authors of local floras; and in some cases species (as the Arbutus) were put down as shrubs, though there was plain evidence that they attained the size and filled the functions of forest trees.
ADDITIONS AND DONATIONS
TO THE
LIBRARY.
1904–1905.

XXVII. Siphonophores provenant des Campagnes du Yacht Princesse-Alice (1892–1902). Par Maurice Bedot. (1904.)
XXIX. Mémoires océanographiques. (Première Série.) Par J. Thoulet. (1905.)
XXX. Description des Antipathaires et Cérianthaires recueillis par S.A.S. le Prince de Monaco dans l’Atlantique nord (1886–1902). Par Louis Roule. (1905.)

LINN. SOC. PROCEEDINGS.—SESSION 1904–1905.

—— Paleontología Argentina. (Public. Univ. La Plata, Facultad Ciencia, &c., No. 2.) Svo. La Plata, 1904.

I. Michaelson (W.). Die Oligochäten des Baikal-Sees. Pp. 68; figs. 9. (1905.)

Barcellos (Henrique de). *See* Revista do Centro de Sciencias, Letras e Artes de Campinas.

Bedot (Maurice). *Siphonophores (Princesse-Alice).* *See* Albert.

Bergen Museum.

Bergens Museum Skrifter.

Berlese (Antonio). *See* "*Redia,*" Giornale di Entomologia, &c.

Bibliotheca Botanica (*continued*).

Bibliotheca Zoologica (*continued*).

Bordeaux.

Société Linnéenne de Bordeaux.

Actes; Vols. 30–59. Svo. Bordeaux, 1875–1904. [Also divided into series of 10 volumes each.]
Boulenger (George Albert). The Flat Fishes of Cape Colony. See Cape of Good Hope: Dept. of Agric. Marine Investigations in South Africa.

— Descriptions of Two New Gobiiform Fishes from the Cape of Good Hope. See Cape of Good Hope: Dept. of Agric. Marine Investigations in South Africa.

— Descriptions of New Fishes from the Cape of Good Hope. See Cape of Good Hope: Dept. of Agric. Marine Investigations in South Africa.

— On a Specimen of Lophotes Cepedicmus from the Cape of Good Hope. See Cape of Good Hope: Dept. of Agric. Marine Investigations in South Africa.

— See Cambridge Natural History, Vol. VII. Fishes (Systematic Account of Teleostei).

British Museum (continued).

Birds.

Insects.

Lepidopterous Insects.

V. Pp. xvi, 634, figs. 172. Plates 78–95. (1905.)

Orthopterous Insects.

British Museum (continued).

Economic Zoology.

Plants.

Fossils.

Guide-Books.

Brooklyn.

Brooklyn Institute of Arts and Sciences.

Cold Spring Harbor Monographs.

1. Smallwood (Mabel E.). The Beach Flea: Talorchestia longicornis. Pp. 27; plates 3, figs. 3. (1903.)
2. Davenport (Charles Benedict). The Collembola of Cold Spring Beach, with special reference to the Movements of the Poduridae. Pp. 32; plate 1. (1903.)

Buitenzorg.
I. RACIBORSKI (Maryân). Die Pteridophyten. Pp. xii, 255. (1898.)
II. PENZIG (Otto). Myxomycètes. Pp. 83. (1898.)
III. WILDEMAN (Émile de). Les Algues. Pp. xi, 457; plates 16, figs. 149. (1900.)

Cairo.

Calcutta.

Indian Museum.

Fishes. (Systematic Account of Teleostei.) By G. A. Boulenberg. 1904.

Canada.

Geological Survey (continued).

On Cryptogamen incrassatus (Cope), from the Edmonton Series of the North-West Territory. By Lawrence M. Lambe. Pp. 27; plates 8. 1904.

Cape Town. See South African Association for the Advancement of Science.

Ceylon Marine Biological Laboratory. See Colombo.

II. Asymmetry and Symmetry. (A. H. Church.) Pp. 79–211. (1902.)

Clayton (John). The 'Sequoias,' with special reference to the Section of the Big Tree named 'Mark Twain.' 4to. Bradford, 1896. Author.

Cold Spring Harbor Monographs. See Brooklyn Institute of Arts and Sciences.

Colombo.

Ceylon Marine Biological Laboratory.
Reports, No. 1. 4to. Colombo, 1905.

I. Hornell (James). The Biological Results of the Ceylon Pearl Fishery of 1904, with Notes on Divers and their Occupation. Pp. iv, 39; plates 15. (1905.)

Royal Botanic Gardens, Peradeniya.

J. C. Willis.

Davenport (Charles Benedict). The Collembola of Cold Spring Beach, with special reference to the Movements of the Poduridae. See Brooklyn Institute of Arts and Sciences. Cold Spring Harbor Monographs, II.

Dimon (Abigail Camp). The Mud-Snail: Nassa obsoleta. See Brooklyn Institute of Arts and Sciences. Cold Spring Harbor Monographs, V.

Don (George). The Life and Work of. See Druce (George Claridge).

Dublin.

Botanical School of Trinity College.

Dyer, Sir William Turner Thiselton-. See Oliver, D.

Edinburgh. Royal Caledonian Horticultural Society.

Egypt. See Swedish Zoological Expedition to Egypt and the White Nile, 1901.

Elliot (Daniel Giraud). The Land and Sea Mammals of Middle America and the West Indies. (Field Columbian Mus. Public. 95, Zool. Ser. vol. iv. pts. 1, 2.) Svo. Chicago, 1904.

Vol. IV., Pt. 1: pp. xx, 1-439, Index i-xlii; plates 1-41, figs. 1-58, figs. 1-82.

Elliot (George Francis Scott), Laurie (Malcolm), and Murdoch (J. Barclay). Fauna, Flora, and Geology of the Clyde Area; prepared for the Meeting of the British Association in Glasgow in 1901. Pp. x, 567, and Map.

Svo. Glasgow, 1901. Authors.

Svo. Leipzig, 1905.

Farran (George P.). On the Opisthobranchiate Mollusca. Pp. 36, plates 6. (Herdmann, Rep. to the Govt. of Ceylon on Pearl Oyster Fisheries of the Gulf of Manaar. Part iii.)

Firenze. See “Redia,” Giornale di Entomologia pubblicato dalla R. Stazione di Entomologia Agraria in Firenze.

Forests, Conservator of. See Natal.

Gardeners’ Chronicle. 3 ser. Vols. 35, 36.

4to. Palermo, 1904.
Giglioli (Enrico Hillyer). See Beccari (Odoardo). Wanderings in the Great Forests of Borneo.

Guillemand (Francis Henry Hill). See Beccari (Odoardo). Wanderings in the Great Forests of Borneo.

Hancock (the late Albany). See Alder (the late John). The British Tunicata: Ray Society.

Hansen (Emil Christian). Ueber die Brutstätten der Alkohol-
Parasitenk. u. Infektionskr., Abt. ii. Bd. 14.)

Hansen (Hans Jacob). Preliminary Report on the Schizopoda
collected by H.S.H. Prince Albert de Monaco during the Cruise
of the Princesse-Alice in the Year 1904. Pp. 32; figs. 22.

Hansen (H. J.) and Sørensen (William). The Tartarides, a Tribe of
Svo. Stockholm, 1905. Authors.

Harmer (Sidney Frederic). See Cambridge Natural History,
Vol. VII. Hemichordata.
— The Pterobranchia of the Siboga Expedition, with an
Account of other Species. Siboga-Expeditie, Monogr. 26 bis.

Hayes (Edward Harold) and Church (Arthur Harry). Mathem-
tatical Notes on Log. Spiral Systems and their Application to
Phyllotaxis Phenomena. (Church, On the Relation of Phyllo-

Hazewinkel (J.) and Wilbrink (G.). Onderzoekingen aan het

Heigl (K. Th. von). Zum Andenken an Karl von Zittel. Rede
in der öffentlichen Festsitzung der K.-B. Akademie der Wissen-

Herdman (William Abbott). See Cambridge Natural History,
Vol. VII. Ascidians and Amphioxus.
— See Kermode (Philip M. C.). Illustrated Notes on Manks
Antiquities.

Hesse (Oswald). Beiträge zur Kenntnis der Flechten und ihrer
charakteristischen Bestandteile. (Neunte Mitteilung.) Pp. 54.
(Journ. f. praktische Chemie, N. F. Band 70, pp. 449-500.)
Svo. Leipzig, 1904. Author.

Hill (Matthew Davenport) and Webb (Wilfred Mark). Eton
Nature-Study and Observational Lessons. With a Foreword by
the Rev. Edmund Warre. Part II. Pp. xvi, 174; figs. 135-
255. 4to. London, 1904. Authors.

Hissink (D. J.). Een Studie over Deli-Tabak naar aanleiding van
de in 1900 en 1901 genomen bemestingsproeven op de onder-

Pp. 68; figs. 2, plates 37. (U.S. Dept. Agric., Bureau of

B. Daydon Jackson.

Hopkinson (John). See Alder (the late John) and Hancock (the late Albany). The British Tunicata: Ray Society.

Hornell (James). The Biological Results of the Ceylon Pearl Fishery of 1904. See Colombo: Ceylon Marine Biological Laboratory, No. 1.

Immermann (Ferdinand). See Plankton-Expedition. Die Tripyleen-Familie der Aulacanthiden.

India.

Geological Survey (con.).
Memoirs (Palæontologia Indica).
Ser. XV. Himalayan Fossils.

Jameson (Hampden Gurney). See Dixon (Hugh Neville). The Student's Handbook of British Mosses.
Jerosch (Marie). See Schroeter (Carl). Das Pflauzenleben der Alpen.
Kew.
Royal Botanic Gardens.
Bulletin of Miscellaneous Information.
" 1–4 for 1904.
" 1–3 for 1905.
Director.
Band I. Einleitung und Litteratur. Pp. xix, 400; figs. 81, und Porträt. (1898.)
Band II. Die bisher in Europa und im arktischen Gebiet gemachten Blütenbiologischen Beobachtungen.
I. Ranunculaceae bis Compositae. Pp. 697; figs. 1–210, und Porträt. (1898.)
II. Lobeliaceae bis Gnetaceae. Pp. 705; figs. 211–429, und Porträt. (1899.)

II. Clethracee bis Compositae. Pp. v, 601; figs. 142-197. (1905.)

Svo. Zürich, 1905. Dr. Hans Schinz.

Lafar (Franz). Handbuch der Technischen Mykologie, &c. Liefg. I.

Svo. Jena, 1904.

4to. Ottawa, 1904.

Laurie (Malcolm). See Elliot (George Francis Scott). Fauna, Flora, and Geology of the Clyde Area.

Liverpool.

Biological Station at Port Erin (Isle of Man).

Annual Report 18.

Svo. Liverpool, 1904.

W. A. Herdman.

Svo. São Paulo, 1904. Author.

Lönnberg (Einar). See Artedi (Peter). A Bicentenary Memoir.

Loew (Ernst). Einführung in die Blütenbiologie auf historischer Grundlage. Pp. xii, 432, mit 50 Abbildungen.

See Knuth (Paul). Handbuch der Blütenbiologie.

Lomax (James). See Weiss (Frederick Ernest). The Stem and Branches of Lepidodendron selaginoides.

McCabe (Joseph). See Haeckel (Ernst Heinrich). The Riddle of the Universe at the Close of the Nineteenth Century. — See Haeckel (Ernst Heinrich). The Wonders of Life.

MacDougal (Daniel Trembly). See Vries (Hugo de). Species and Varieties: their Origin by Mutation.

Manchester.

Botanical Exchange Club of the British Isles.

Manchester Microscopical Society.

Manila.

Department of the Interior.

Monaco.

Musée Océanographique de Monac.

Munich.

Königlich-bayerische Akademie der Wissenschaften.

Murdoch (J. Barclay). See Elliot (George Francis Scott). Fauna, Flora, and Geology of the Clyde Area.

Natal.

Conservator of Forests.

Reports for 1903–1904. 8vo. Pietershartyzburg, 1905.

Svo. Zürich, 1905.

Nordgaard (O.). Hydrographical and Biological Investigations in Norwegian Fiords. See Bergens Museum Skrifter.

Norman (Rev. Alfred Merle). See Alder (the late Joshua) and Hancock (the late Albany). The British Tunicata: Ray Society.

[Continued as]

Oltmanns (Friedrich). Morphologie und Biologie der Algen.
Svo. Jena, 1904.

Svo. Boston, 1904.

—— Opisthenogenesis, or the Development of Segments, Median Tubercles and Markings a tergo. Pp. 6. (Proc. Amer. Phil. Soc. vol. 43.)

fol. Moscow, 1901.

Svo. Cape Town, 1905. Author.

Peradeniya: Royal Botanic Gardens. See Colombo.

Perth.
West Australian Natural History Society. Journal, Nos. 1–2.

[With which is incorporated the Mueller Botanic Society.]
Philadelphia.
University of Pennsylvania.

Pietermaritzburg. See Natal: Conservator of Forests.

Portici. See "Redia," Giornale di Entomologia, &c.

Ray Society. Publications (cont.).

Rennes.

Ris (Fr.). Odonaten. See Hamburger Magalhaensischen Sammel-reise, Liegf. 7.

Roule (Louis). Description des Antipathaires et Cérianthaires recueillis par S.A.S. le Prince de Monaco dans l'Atlantique nord (1886–1902). See Albert.

Schroeter (Ludwig). See Schroeter (Carl). Das Pflanzenleben der Alpen.

Schuller (Rodolfo R.). See Azara (Félix de). Geografía Física y Esférica de las Provincias del Paraguay, y Misiones Guaraníes.

Sim (Thomas Robertson). See Natal: Conservator of Forests.

Simmons (Herman George). Notes on some rare or dubious Danish-Greenland Plants. Pp. 5. (Meddelelser om Grönland, xxvi.) Svo. Copenhagen, 1904. Author.

—— See Porsild (Morten P.). Om Færøernes Havalgevegetation og dens Oprindelse.

—— The Salt-Marsh Amphipod: Orchestia palastris. See Brooklyn Institute of Arts and Sciences. Cold Spring Harbor Monographs, III.

Sydow (H.). See Annales Mycologici.

Theobald (Frederick V.). Report on Economic Zoology. See British Museum (Natural History).

Thoulet (J.). Mémoires océanographiques. See Albert.

United States Department of Agriculture (con.).

Division of Botany.

Contributions from the U.S. National Herbarium.

Bureaup of Plant Industry.

Werner (Franz) Reptilien und Batrachier. See Hamburger Magalhaensischen Sammelreise, Liefg. 7.

West Australian Natural History Society. See Perth.

White Nile. See Swedish Zoological Expedition to Egypt and the White Nile. 1901.

Willis (John Christopher). See Colombo: Royal Botanic Gardens, Peradeniya.

Zoológica. See Bibliotheca Zoologica.

DONATION IN AID OF PUBLICATIONS.

1905.

£ s. d.

March 8. The Royal Society. First grant in aid of Dr. G. Herbert Fowler's "Biscayan Plankton" (Trans. 2nd ser., Zool. vol. x.) 50 0 0
INDEX TO THE PROCEEDINGS.

SESSION 1904–1905.

Note.—The following are not indexed:—The name of the Chairman at each meeting; speakers whose remarks are not reported; and passing allusions.

Abstracts: Botanical collecting (Henry), 62; Proteid Digestion in Animals and Plants (Vines), 59.
Accounts, Treasurer’s Statement, 15.
Additional rooms for use, 1.
Address, Presidential, 18–30.
Africa, South, Crustacea from, 6.
Alexandra, Her Majesty the Queen, an Honorary Member, 7.
Alternations in Bye-Laws, 1.
America, South, gigantic prawn from, 6.
Anderson, W. J. W., admitted, 58; elected, 56; proposed, 14.
Anglo-German Uganda Boundary Commission, Botany of (Baker, Moore, & Rendle), 9.
Animals and Plants, Proteid Digestion in (Vines), 4; Abstract, 59.
Appleyard, F., elected, 4; proposed, 1.
Aquatic Monocotyledons, Axillary Scales of (Gibson), 13.
Arctic Crustacea shown (Stebbing), 6.
Arum maculatum, Digestion of flies by (Gerard), 58; Slides representing fertilization, exhibited by Rev. J. Gerard, 58.
Ascherson, Prof. P. F. A., elected For. Mem., 14; proposed, 9.
Asheton, R., Councillor, 4.
Auditors nominated, 12.
Avebury, Rt. Hon. Lord, moved vote of thanks for Presidential Address, 30; on Shape of Stems of Plants, 3.
Axillary Scales of Aquatic Monocotyledons (Gibson), 13.
Baker, J. G., Revised Classification of Roses, 9.
Bamboos, Nerves and Veins in Leaves of (Braudis), 58.
Bassett-Smith, P. W., collected Crustacea, 6.
Beddome, Col. R. H., Scrutineer, 17.
Bedford, Her Grace the Duchess of, admitted, 14; elected, 5; proposed, 3.
Bee fertilizing Scabious flower, photographs exhibited by Mrs. D. H. Scott, 11.
Bennett, A., resignation, 16.
Bennettites, model exhibited by H. E. H. Smedley, 3.
Benson, Miss M., admitted, 5; elected, 5; proposed, 3.
Berridge, Miss E. M., admitted, 10; elected, 9; proposed, 7.
Bird-life, photographs by R. Vallentin, 11.
Birkett, J., deceased, 16; obituary, 32.
Biscayan Plankton, Pt. IV. Thaliacea (Fowler), 10; V. Schizopoda (Holt & Tattersall), 14; VI. The Colloid Radiolaria (Wolfenden), 58; VII. Mollusca (Felseneer), 58.
Biziura lobata, Skeleton of (Pycraft), 58.
Borneo, Crustacea from (Stebbing), 6.
Botanical Collecting (Henry), 6; Abstract, 62.
Botany of Anglo-German Uganda Boundary Commission (Baker, Moore, & Rendle), 9.
Botany of Gough Island, Pt. I. (Brown), 14; Pt. II, 58.
Bourne, Dr. G. C., Councillor, 17.

LINN. SOC. PROCEEDINGS.—SESSION 1904–1905.
INDEX.

Boyd, W., Crustacea collected by, 6.
Braga, Dr. J. F., deceased, 16.
Braithwaite, Dr., Scrutineer, 17.
Brandis, Sir D., Remarkable Indian
Undershubs, 58; Nerves and Veins
in leaves of Baamoois, 58; reception
of Linnean Medal on behalf of Prof.
E. Strasburger; 30.
Brean Down, Asteria valesiaca from
(Druce), 2. [Brent Down is erro-
aneous.]
British Museum, section of Sequoia
possessed by, 4.
Brown, A. F., "Sudd" Formation of
Upper Nile, 2.
Brown, Dr. H. T., Councillor, 17.
Brown, R. N. R., Botany of Gough
Island, 14, 58.
Bruce, W., Crustacea collected by, 6.
Bryozoa from Cape Horn (Waters), 3.
Buckton, G. B., Hemiptera-Homoptera
of Family Membracidae, 7.
Burdon, E. R., elected, 56; proposed, 12.
Busk, Lady, admitted, 14; elected, 12;
proposed, 9.
Bye-Laws, New, 1, 2; ballot for, 2;
repeal of, 1; suggestions for, 2.

Calamostachys, model exhibited by H.
E. H. Smedley, 7.
Cambridge, R. H., elected, 4; proposed, 1.
Candolle, A. P. de, Prize, Award
notified by the Société de Physique
et d'Histoire Naturelle de Genève,
8.
Caprellid, exhibited by Rev. T. R. R.
Stebbing, 6.
Capron, F. H., admitted, 10; elected,
9; proposed, 7.
Ceratosaurus, model by H. E. H.
Smedley, 56.
Chandler, S. E., admitted, 6; elected,
5; proposed, 9.
Cheeseman, W. N., admitted, 9.
Cheirostrobus, model exhibited by H. E.
H. Smedley, 3.
Chinese Plants, New (Tutcher), 8.
Chlophragia antarctica, photographs by
R. Vallentin, 11.
Christy, T., exhibited "Root" or
"Grass" rubber from Landolphia
Thollonii, 5.
Cingularia, model exhibited by H. E.
H. Smedley, 3.
Cirolanina, subfamily of Crustacea
Isopoda, European Marine Forms
(Hansen), 8.
Clarke, C. B., remarks on Corypha elata,
57; Vice-President, 56.
Clarke, Miss L. J., admitted, 14;
elected, 12; proposed, 9.
Classification of Roses, Revised (Baker),
9.
Clayton, J., photographs of Sequoias, 4.
Clitheroe, proflferous Planflago from
(Gerard), 2.
Cloria, photographs exhibited by Mrs.
D. H. Scott, 11.
Collecting, Botanical (Henry), 6;
Abstract, 62.
Committee to consider Zoological
Nomenclature, 10.
"Comparascope," Ashe-Finlayson,
exhibited by D. Finlayson, 10.
Cones, Palaeozoic, models exhibited by
H. E. H. Smedley, 3.
Congo, French, "Root" or "Grass"
rubber from (Christy), 5.
Corypha elata, photograph of abnormal
specimen by J. Waby, 56.
Councillor, Ballot for, 17.
Councillors, Special Meeting for electing
additional, 4.
Crabtree, A., resignation, 16.
Cranial Osteology of Families Osteo-
glossida, Pantodontidae, and Phaneto-
lemidae (Ridewood), 6.
Crayfish, Request for information on
distribution of, Rev. T. R. R.
Stebbing, 6.
Crisp, Mrs. C., admitted, 5; elected,
5; proposed, 3.
Crisp, F., Schubertia graveolens,
exhibited, 2; Vice-President, 56; vote
of thanks for services on retirement
from Treasurer'ship, 16.
Crocos, photographs exhibited by Mrs.
D. H. Scott, 11.
Crustacea exhibited by Rev. T. R. R.
Stebbing, 5.
— Isopoda, European Marine Forms
of Cirolaninae (Hansen), 8.
Cryptogams, Palaeozoic, models ex-
hibited by H. E. H. Smedley, 3.
Currey, F., a former Treasurer, men-
tioned, 16.
Curtis, C., resignation, 16.

Daltry, Rev. T. W., deceased, 16;
obituary, 32.
Deane, H., admitted, 3.
Dicks, A. J., admitted, 56; elected, 14;
proposed, 10.
Diego Garcia, Crustacea from (Stebbing),
6.
Digestion, Proteid, in Animals and
Plants (Vines), 4; Abstract, 59.
INDEX.

Dillenius, J. J., Koeleria valesiaca in his herbarium, 2.
Diomedea chlororhyncha, photographs by R. Valentini, 11.
Diplotodon, model exhibited by H. E. H. Smedley, 56.

Donation, 88.

Drawings of Roses by A. Parsons, exhibited by Miss E. Willmott, 9.
Druce, G. C., Koeleria valesiaca, exhibited, 2.
Druce, H., Auditor, 12; Scrutineer, 4.

Duck, Musk-, skeleton (Tyrrell), 58.

Ecology of Woodland Plants near Huddersfield (Woodhead), 5; see also Ecology.
Eddison, G., collected Crustacea, 6.
Elwes, H. J., remarks on Botanical Collecting, 6, 62.
Embleton, Miss A. L., admitted, 6; elected, 5; proposed, 3.

Empetrum nigrum, used for nests of Pygochelis lanata, 11.

England, Crayfish distribution in (Stebbing), 6.
Epps, J., deceased, 16; obituary, 33.

Eucryptes chrysocome, photographs shown by R. Valentini, 11.

Europe, Crustacea in Arctic regions (Stebbing); — Marine Cirolaninae (Hansen), 8.

Falklands, photographs of bird-life in (Valentini), 11.

Farmar, L., slides illustrating pitchers of Nepenthes, 12.
Farquharson, Mrs. M. S. O., proposed, 3.
Ferguson, W., deceased, 16; obituary, 33.

Flora of Liberia (Staff), 11.

Flower, W., deceased, 16; obituary, 33.
Forrest, W. R., Crustacea collected by, 6.
Fowler, G. H., Biscayan Plankton: Thalassia, 10; communication (Holt & Tattersall), 14; — (Pelseneer), 58; Grant in aid of publication, 88.
Fowler, Rev. Canon W. W., Councillor, 4.
Frankland, Mrs. G. C., elected, 5; proposed, 3.
Fraser, Miss H. C. I., admitted, 11; elected, 9; proposed, 7.
Freeman, W. G., fruit of Sechium edule, 5.
Fry, A., deceased, 16; obituary, 33.

Fuchsia, photographs exhibited by Mrs. D. H. Scott, 11.

Gentoo Penguin, photographs shown (Valentini), 11.

Georgetown, abnormal specimen of Corypha elata at (Waby), 56.

Gerard, Rev. J., exhibited Plantago major, 2; exhibited slides representing fertilization of Arum maculatum, 58.

Germination, precocious, of Sechium edule (Freeman), 5.

Gibbs, Miss L. S., elected, 7; proposed, 4.

Gibson, Prof. R. J. II., Axillary Scales of Aquatic Monocotyledons, 13.

Gilebrist, Dr., Crustacea collected by, 6.

Gill of Ceylon Pearl Oyster, its Structure (Herdman), 2.

Goodall, T. B., admitted, 4; elected, 4; proposed, 1.

Gordon, Mrs. M. M. O., admitted, 14; elected, 5; proposed, 3.

Gossweiler, J., elected, 10; proposed, 8.

Gough Island, Botany of (Brown), 14, 58.

Grass, Tussock (Poa caespitosa), used for nests (Valentini), 11.

Greville, S., acknowledged receipt of letter to H.M. Queen Alexandra, 8; letter conveying consent of H.M. the Queen to become an Honorary Member, 7.

Groves, H., Auditor, 12; Scrutineer, 4; moved adoption of Treasurer's Statement, 15.

Guiana, abnormal specimen of Corypha elata in (Waby), 56.

Günther, Dr. A. C. L. G., retired from Council, 17.

Haberlandt, Prof. G., elected for Memb., 14; proposed, 9.

Hall, Miss K. M., admitted, 58; elected 58; proposed, 12.

Hansen, Dr. H. J., European Marine Forms of Cirolaninae, 8.

Heemiptera-Homoptera of Family Membracoidea (Buckton), 3.

Hemsley, W. B., communication of papers by R. N. R. Brown, 14, 58; exhibited specimens of Nepenthes, 12.

Henry, Dr. A., Botanical Collecting, 6; Abstract, 62.

Herbarium of Dillenius, Koeleria valesiaca from, 2.

Herdman, Prof. W. A., communication relative to H.M. Queen Alexandra becoming an Honorary Member, 7; elected President, 17; Remarks on
INDEX.

"Comparascope," 10; and on Linnean manuscripts, 58; Structure of Gill of Ceylon Pearl-Oyster, 2.

Heredity in Rabbits (Hurst), 5.

Hodgson, T. V., elected, 8; proposed, 5.

Holt, E. W. B., admitted, 6; elected, 5; proposed, 4.

Horne, J., deceased, 16; obituary, 34.

Hose, Dr. C., Crustacea collected by, 6.

Howes, Prof. T. G. B., deceased, 16; expression of sympathy, 9; obituary, 34.

Howes, Mrs., Resolution expressive of sympathy with, 9.

Hubrecht, Prof. A. A. W., elected For. Mem., 14; proposed, 9.

Hume, A. O., admitted, 1.

Hurst, C. C., Heredity in Rabbits, 5.

Ichthyosaurus, model exhibited by H. E. H. Smedley, 56.

Indian Under-shrubs (Brandis), 58.

Iby, Lieut.-Col. L. H. L., deceased, 16; obituary, 39.

Jackson, B. Daydon, elected General Secretary, 17; exhibited Linnean manuscripts, 57; seconded vote of thanks to F. Crisp, 16.

Jesup Collection of Woods referred to, 4.

Kammatograph, photographs taken by, exhibited by Mrs. D. H. Scott, 10.

Kelp Goose, *Chloephaga antarctica*, its food (Vallentin), 11.

Kerguelen, Caprellid from, 6.

Knaggs, H. G., resignation, 16.

Koelreuteria vallesiaca from Dillenian herbarium, &c., exhibited by G. C. Druce, 2.

Landolphia Thollonii, "Root" or "Grass" rubber from, exhibited (Christy), 5.

Latham, Miss V. A., elected, 8; proposed, 5.

Leaves of Bamboos, Nerves and Veins in (Braun)is), 58.

Liberia, Flora of (Stapf), 11.

Librarian’s Report, 17.

Linnean Medal, awarded to Prof. E. Strasburger, 30.

Linnaeus, Manuscripts of, exhibited by General Secretary, 57.

Lister, Miss G., admitted, 5; elected, 5; proposed, 3.

Low, Sir H., deceased, 16; obituary, 39.

Lucas, F. W., admitted, 58; elected, 56; proposed, 12.

Luelmann, J. G., deceased, 16; obituary, 42.

McLachlan, R., deceased, 16; obituary, 42.

Macmillan, H. F., elected, 56; proposed, 14.

Mansoniae, a Tribe of Stereulinaceae (Prain), 13.

Manuscripts of Linnaeus, exhibited by General Secretary, 57.

Martens, Prof. E. von, death reported, 8, 16; obituary, 43.

Masters, Dr. M. T., seconded vote of thanks for Presidential Address, 30; *Widdringtonia*, 56.

Matthaei, Miss G. L. C., proposed, 9.

Medal, Linnean, awarded to Prof. E. Strasburger, 30.

Meeting, Special, for electing additional Councillors, 4.

Membracidae (Buckton), 3.

Middleton, R. M., resignation, 16.

Midland Counties, distribution of Crayfish in, 6.

Mimosus pudica, photographs exhibited by Mrs. D. H. Scott, 10.

Mollusea, Pt. VII. of Bisenyan Plankton (Felceener), 58.

Mollymuk, *Diomedea chlororhynych*, in the Falklands (Vallentin), 11.

Monckton, H. W., Auditor, 12; Councillor, 4; Treasurer, 17; Vice-President, 56.

Monocotyledons, Aquatic, Axillary Scales of (Gibson), 13.

Moore, J. E. S., admitted, 3.

Moore, S. L., see Baker, Moore, and Reudle.

Muff, Mrs. M., admitted, 14; elected, 14; proposed, 10.

Musk-Duck, skeleton (Pycraft), 58.
Report of Librarian, 17.
Ridewood, Dr. W. G., Cranial Osteology of the Families Osteoglossidae, Pterygotidae, and Phracotawneeidae, 6; Remarks on "Comparascope," 10.
Rockhopper Penguin; see Enudipes chrysogone.
Rogers, Rev. W. M., admitted, 14.
Rooms, formerly in possession of the Post Office, newly acquired by the Society, 1.
Rosses, Drawings by A. Parsons, exhibited by Miss E. Willmott, 9.
Rosses, Revised Classification of (Baker), 9.
Royal Society, Grant in aid of publication, 88.
Rubber, "Root" or "Grass," from Landolphia Thollontii, exhibited by T. Christy, 5.
Russell, Her Grace Mary du Cauroy, Duchess of Bedford, admitted, 14; elected, 5; proposed 3.
Sanders, A., deceased, 16; obituary, 53.
Sargant, Miss E., admitted, 5; elected, 5; proposed, 3.
Saunders, C. J., Crustacea collected by, 6.
Saunders, E. M., Crustacea collected by, 6.
Saunders, Miss E. R., admitted, 12; elected, 10; proposed, 8.
Saunders, G. S., Auditor, 12; retired from Council, 17.
Sawer, J. C., deceased, 16; obituary, 54.
Scabious, Bee fertilizing a flower, photographs exhibited by Mrs. D. H. Scott, 17.
Scales, Axillary, of Aquatic Monocotyledons (Gibson), 13.
Scleractinacea, model exhibited by H. E. H. Smedley, 56.
Schizopoda, Boscian Plankton, Pt. V. (Holt & Tattersall), 14.
Schizopoda, Branchial Plankton, Pt. V. (Holt & Tattersall), 14.
Schoberia gracilees, Lindl., exhibited by F. Crisp, 2.
Scott, Dr. D. H., elected Secretary, 17; remarks on "Comparascope," 10.
Scott, Mrs. H. V., admitted, 8; elected, 7; proposed, 4; show of photographs taken by kammograph, 10.
Sechium edule, exhibited by W. G. Freeman, 5.
Seeds, Palaeozoic, models exhibited by H. E. H. Smedley, 3.
Sensitive Plant, Mimosa pudica, shown (Scott), 10.
Sewoias, photographs of, by J. Clayton, 4.
Seward, A. C., retired from Council, 17.
Sharp, C., resignation, 16.
Sharp, D., Councillor, 17.
Shipley, A. E., elected, 5; proposed, 3.
Sigillariostrbus, model exhibited by H. E. H. Smedley, 3.
Silver, Miss S. M., admitted, 5; elected, 5; proposed, 3.
Silver, S. W., deceased, 16; obituary, 64.
Singapore, Crustacea from, 6.
Skeleton of Bizinha lobata (Pycoft), 58.
Shaden, Mrs. O. P., admitted, 5; elected, 5; proposed, 3.
Smith, Miss A. L., admitted, 5; elected, 5; proposed, 3.
Société de Physique et d'Histoire Naturelle de Genève, Notice of A. P. de Candolle Prize, 8.
Somersetsitih, Kocheria valesiaca from, 2.
Spar Лаmmia africana, photographs exhibited by Mrs. D. H.Scott 10.
Spencerites, model exhibited by H. E. H. Smedley, 3.
Stapf, Dr. O., Flora of Liberia, 11.
Stebbing, Mrs. M. A., admitted, 5; elected, 5; proposed, 3.
Stebbing, Rev. T. R. R., elected Secretary, 17; exhibited remarkable Crustacea, 5; remarks on "Comparascope," 10; request for information on distribution of river Crayfish, 6; on Zoological Nomenclature, International Rules and others, 10.
Stegosaurus, model by H. E. H. Smedley, 56.
Stems of Plants, their shape (Avebury), 56.
Sterculiaceae, Mansoniae, a Tribe of (Prain), 13.
Storey, C. B. C., admitted, 8; elected, 7; proposed, 4.
Strasburger, Prof. E., awarded Linnean Medal, 30; Letters from, 31, 32; the same read, 56.
Structure of Gill of Ceylon Pearland-Oyster (Herdman), 2.
"Sudd" Formation of Upper Nile (Broun), 2.
Suggestions for Bye-Laws, 2.
Tansley, A. G., to open discussion on Ecology, 10; on Vegetation (Ecology), 14.
Tattersall, W. M.; see Holt & Tattersall.
INDEX.

Thaliacea, Biscayan Plankton, Pt. IV. (Fowler), 10.
Treasureer's Statement of Accounts, 15.
Turner, Miss E. L., admitted, 5; elected, 5; proposed, 5.
Tussock Grass, *Poa caespitosa*, used for nests (Vallentin), 11.
Tutcher, W. J., admitted, 6; elected, 5; proposed, 3.
Tussock Grass, *Poa caespitosa*, used for nests (Vallentin), 11.
Tutcher, W. J., admitted, 6; elected, 5; proposed, 3.

Uganda Boundary Commission, Botany (Baker, Moore, & Rendle), 9.
Undershubs, Remarkable Indian (Brandis), 58.

Vallentin, R., photographs of bird-life in the Falklands, 11.
Vegetation, Phenomena of (Tansley), 14.
Veins and Nerves in Leaves of Bamboos (Brandis), 58.
Veley, Mrs. L. J., admitted, 5; elected, 5; proposed as Fellow, 3.
Vines, Prof. S. H., moved vote of thanks to F. Crisp, 16; Proteid Digestion in Animals and Plants, 4; —Abstract, 59; retired from Council, 17.

Waby, J. F., photographs and letter re abnormal *Corrypha elata*, 56.
Wallker, C. E., admitted, 4.
Walker, Rev. F. A., deceased, 16; obituary, 55.
Walker, A. O., Scrutineer, 4.

Ward, Prof. H. M., remarks on *Plantago major*, 2.
Waters, A. W., Bryozoa from Cape Horn, 3.
Webb, E. A., resignation, 16.
Webb, W. M., Scrutineer, 17.
West Indies, Crustacea from, 6; *Sechium edule* from, 5.
Widdringtonia (Masters), 58.
Willuofi, Miss E. A., admitted, 5; elected, 5; proposed, 3; show of drawings of Roses by Alfred Parsons, 9.
Wilshire, J. T., resignation, 16.
Wise, W., admitted, 14; elected, 12; proposed, 9.
Wolfenden, Dr. R. N., admitted, 4; Biscayan Plankton, Pt. VI, Colloid Radiolalia, 58; elected, 4; proposed, 1.
Woodward, Dr. A. S., Councillor, 17; Remarks on Models of Dinosaurs, 56; Vice-President, 56.
Woronin, Dr. M., death reported, 8.

Yapp, Prof. R. H., elected, 7; proposed, 4.
Zeiller, Prof. C. R., elected For. Mem., 14.
Zoological Nomenclature, Committee to discuss, 10; International Rules, and others (Stebbing), 10.

PRINTED BY TAYLOR AND FRANCIS, RED LION COURT, FLEET STREET.
PROCEEDINGS

OF THE

LINNEAN SOCIETY OF LONDON.

118th SESSION.

FROM NOVEMBER 1905 TO JUNE 1906.

LONDON:

PRINTED FOR THE LINNEAN SOCIETY,
BURLINGTON HOUSE, PICCADILLY, W.,
1906.
CONTENTS

<table>
<thead>
<tr>
<th>List of Publications issued</th>
<th>iv</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceedings of the 118th Session</td>
<td>1</td>
</tr>
<tr>
<td>President's Address</td>
<td>18</td>
</tr>
<tr>
<td>Obituaries</td>
<td>32, 109</td>
</tr>
<tr>
<td>Abstracts of Papers</td>
<td>52</td>
</tr>
<tr>
<td>Benefactions, 1790–1906</td>
<td>70</td>
</tr>
<tr>
<td>Additions to the Library</td>
<td>77</td>
</tr>
<tr>
<td>Donations</td>
<td>108</td>
</tr>
<tr>
<td>Index</td>
<td>115</td>
</tr>
</tbody>
</table>
Publications of the Society issued during the period, 31st July, 1905, to 31st July, 1906:—

 ,, 259, 30th Sept., 1905.
 ,, 260, 23rd July, 1906.
,, (Zoology), No. 193, 21st Feb., 1906.
 ,, 194, 23rd July, 1906.

 ,, iv., Sept. 1906.
 ,, v., Feb. 1906.

November 2nd, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 15th June were read and confirmed.

Colonel Arthur Henry McMahon, C.S.I., C.I.E., was admitted a Fellow.

Mr. Jesse Reeves was elected a Fellow.

Mr. Oakes Ames, A.B., A.M., Harvard; Mr. Edward Archibald Smith, M.B., F.R.C.S.; The Rt. Hon. William Geoffrey Bouchard de Montmorency, Viscount Mountmorres; and Mr. Alfred Douglas Hardy, were proposed as Fellows.

The Rev. George Henslow, M.A., F.L.S., exhibited the tails of trout and grayling to show the heterocercal origin of the homocercal tail, by means of the hypural bones which balance the vertebra turning upward towards the upper lobe.

The Rev. George Henslow then delivered an address on "Plant Oecology, interpreted by direct response to the conditions of Life." He remarked that Plant Geography and Plant Surveying—that is, Phytotopography—comprise records of the fluctuating
distribution of species within definite areas, Associations, the result of Natural Selection, which he defined as the Struggle for Existence, and the Survival of the better-adapted under the circumstances.

Oecology proper, or the Physiology of Plant-geography, implied what had been defined by Prof. Tansley as "The Study of the vital relations of Organisms to their Environment." These include the origin of adaptive structures, as varietal, specific, and generic characters, by means of the protoplasmic response to what was formulated by Darwin as "The Direct Action of the Conditions of Life, leading to definite results, whereby new subvarieties arise without the aid of Natural Selection."

These statements were illustrated by specimens, diagrams, and lantern-slides.

The President opened the discussion, which was carried on by Mr. H. M. Bernard, Dr. D. H. Scott, Mr. W. F. Kirby, Rev. T. R. R. Stebbing, Mr. H. Groves, Dr. W. G. Ridewood (who pointed out the use of "Adaptation" in two senses), and Mr. W. C. Worsdell, and the lecturer replied.

November 16th, 1905.

C. B. Clarke, Esq., F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 2nd November were read and confirmed.

The following resolution was put from the Chair, and after adoption was signed by the Chairman and Secretaries for transmission to the President:

"The Fellows of the Linnean Society of London in General Meeting assembled, 16th November, 1905, congratulate the University of Liverpool on the approaching inauguration of the new Zoological Department, and request their President, Professor Herdman, to convey the expression of their good will and good wishes to the Chancellor, Council, and Senate of the University on that occasion."

Messrs. H. and J. Groves exhibited a number of specimens of British Water Ranunculi, with the purpose of showing the modifications in the form of the leaves. They pointed out that the species might be roughly grouped under three headings: (1) those in which only broadly lobed aerial leaves were produced; (2) those in which submersed multifid leaves with capillary segments were also produced; and (3) those with multifid leaves only; that although the plants of the first group as a rule occurred only on mud or in shallow water, those of the second and third
groups frequently occurred together; and they suggested therefore that it required something more than the "direct response to the conditions of life" to account for the different behaviour of closely allied plants growing under precisely the same conditions.

The Rev. T. R. R. Stebbing exhibited a photograph showing, of the natural size, the otoliths from thirty-five species of fishes, a collection made by the late David Robertson, LL.D., F.L.S., "The Naturalist of Cumbrae."

Mr. E. M. Holmes exhibited a leaf and seed of *Macrozamia spiralis*, Miq., from Queensland, where it is stated to cause symptoms of paralysis of the hind-quarters of cattle eating the leaves. The chemical nature of the constituents of the plant appear to be unknown.

Prof. F. W. Oliver contributed some remarks on the subject of this exhibition.

The following paper was read and discussed:—

"Contributions to the Embryology of the Amentiferae. Part II.: *Carpinus Betulus.*" By Margaret Benson, D.Sc., F.L.S., Elizabeth Sanday, B.Sc., and Emily Berridge, B.Sc., F.L.S.

December 7th, 1905.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 16th November were read and confirmed.

Mr. Edward Russell Burdon and Mr. Charles Gilbert Rogers were admitted Fellows.

Mr. Oakes Ames, A.B., A.M., Harvard; Mr. Edward Archibald Smith, M.B., F.R.C.S.; The Rt. Hon. William Geoffrey Bouchard de Montmorency, Viscount Mountmorres; and Mr. Alfred Douglas Hardy, were elected Fellows.

Dr. Edmund Burke, F.Z.S., Dr. William Thomas Calman, F.Z.S., Mr. William Francis Cooper, B.A. Cantab., F.Z.S., F.C.S., and Mr. Walter Draper, were proposed as Fellows.

A letter from Professor Herdman, F.R.S., was read, thanking the Society for the resolution passed at the General Meeting of the 16th November congratulating the University of Liverpool on the inauguration of the new buildings in the Zoological Department, which resolution had been placed in the hands of the Chancellor, and had much gratified the University and the staff of the Department.
Mr. W. T. Hindmarsh, F.L.S., sent three photographs taken by Mr. J. C. Ruddock in April last of a plant of *Shortia uniflora*, Maxim., in his rock-garden at Alnbank, Alnwick; the plant this year had 60 blooms, more than double the number it had the previous year.

Mr. H. J. Elwes and Mr. Frank Crisp spoke on the difficulty of inducing the plant to flower in cultivation, and Mr. E. M. Holmes also contributed some remarks.

Dr. A. B. Rendle, F.L.S., showed a branch of a *Widdringtonia* from a farm belonging to the late Cecil Rhodes in Rhodesia, displaying two forms of leaves.

Mr. James Saunders, A.L.S., showed a series of lantern-slides illustrating the habits of *Mycetozoa*. His observations were practically confined to the species seen within a radius of ten miles from Luton. Out of 207 species catalogued by Mr. A. Lister from the whole world, no fewer than 96, or 46 per cent., have been found in the district specified. The species shown were *Badhamia utricularis*, *Trichia varia*, *Chondrodema radiatum*, and *Physarum leucopus*, with remarks on their irregular and uncertain appearance, and distribution in certain parts of the world.

The President commented on the exhibition, and mentioned that a small dried-up plasmodium had long served him for demonstration to his junior classes on the phenomenon of restoration to activity by moisture and warmth.

Dr. Jonathan Hutchinson, F.R.S., gave a résumé of his paper "On the Ætiology of Leprosy," which was communicated by the Rev. T. R. R. Stebbing, F.R.S., Sec.L.S.; it was discussed at some length.

December 21st, 1905.

C. B. Clarke, Esq., F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 7th December were read and confirmed.

The Viscount Mountmorres and Mr. James Stuart Thomson were admitted Fellows.

Mr. Charles T. Druery, F.L.S., exhibited an aposporous seedling of *Polypodium vulgare*, with a frond bearing a well-defined prothallus at the tip. The species being impatient of close culture, rendered it difficult to treat it successfully under glass. He also showed a new case of apospory in *Cystopteris montana*, presenting the following novel features:—(1) Apospory appearing upon an
otherwise normal plant; (2) entire fronds of abnormally small size characterized by the aposporous diaphanous tissue, which is usually confined to the apices of the fronds; (3) by simple layering these have, without development of root-hairs, produced prothalli; (4) in July last this usually deciduous fern produced six minute pinnatifid fronds at the base of a normal frond, which persisted, and produced young plants from apogamic buds.

The Vice-President in the Chair, and Prof. J. Bretland Farmer contributed some critical remarks, to which Mr. Drury replied.

Dr. A. B. Rendle, F.L.S., then gave a report of the recent Congress, in which he was the Society's delegate:

The International Botanical Congress at Vienna in June last was attended by more than 600 botanists from all parts of the world. The most important work was that of the Conference on Botanical Nomenclature, which met daily throughout the week. The publication of Dr. Otto Kuntze's 'Revisio Generum,' in 1891, had brought to a head the discussion arising, partly, from a certain vagueness in some of the articles of the Candollean code of laws of 1867, and partly from a neglect, by some botanists, of the principles of that code. The actual work of the Conference was to discuss the various suggested amendments of, and additions to, the articles of the Code of 1867, which had been correlated and arranged in the 'Texte Synoptique' by Dr. Briquet, the official reporter-general of the International Botanical Commission appointed at the Paris Congress in 1900. The result is embodied in a set of Rules which will shortly be issued in English, French, and German. The chief points of difference between the new rules and the laws of 1867 are as follows:

In the first place a distinction is drawn between Rules and Recommendations. The former are retroactive and deal with more important points—names or forms of nomenclature which are contrary to a rule and cannot be maintained. Recommendations deal with points of secondary importance; and while names or forms of nomenclature contrary to a recommendation are not to be regarded as a model, they cannot be rejected.

For sake of uniformity the Congress adopted the terms Order and Suborder in place of Cohort and Subcohort; thus Order ceases to be synonymous with Family. The laws of 1867 gave no precise date of departure for botanical nomenclature; the new code states that botanical nomenclature begins with the 'Species Plantarum' of Linnaeus, ed. 1 (1753). Names of genera appearing in this work may be associated with the descriptions which are given in the 'Genera Plantarum,' ed. 5 (1754). To obviate the loss of well-known generic names by a strict adherence to the law of priority, a list of names, to be retained in all cases, was approved by the Conference and will form an appendix to the new code. The articles of the original code dealing with method of formation of names have been made more precise and placed in the new code.
as recommendations. A veto is put on the use of the binary form for subspecific or varietal names.

Publication is restricted to the sale or public distribution of printed matter or indelible autograph; the issue of sets of plants with numbers does not constitute publication. On and after January 1, 1908, new names will not be valid unless accompanied by a Latin diagnosis, and the same time limit is put on the acceptance of plates with analyses but without description. Precision in publication is emphasized by two recommendations, as to the accurate dating and paging of reprints from Journals.

Priority of place is not recognized; to the original article of A. De Candolle, which provided that for names of the same date the author chooses which he will adopt, the new code adds “and this choice cannot be modified by subsequent authors.”

In the case of transference of names the Congress upheld the principle of 1867, which insisted on the retention of the original name; a genus, species, or subspecies must retain its generic, specific, or subspecific name, in case of transference, provided its rank is unaltered. Betula incana, Linn. f. (1781), when transferred to the genus Alnus, becomes Alnus incana, Willd. (1805), in spite of an earlier name under Alnus, viz. A. lanuginosa, Gilib. (1792). Where, however, the rank changes in the transference this rule is not insisted on; thus Primula veris, L., var. acaulis, L. (1753), is written P. vulgaris, Huds. (1762), since the latter combination is earlier than Primula acaulis, Jacq. Where, however, a transference leads to tautology, the resulting combination is rejected; botanical nomenclature thus becomes freed from absurdities such as Linaria Linaria.

The articles of the old code dealing with the alteration or rejection of names were made more stringent: a name cannot be rejected on account of the existence of an older homonym which by general consent is regarded as non-valid—the principle of “once a synonym always a synonym” is not accepted. Nor, as was allowed under the old code, may a name be rejected because it is obviously unsuitable: a name is a name, and once given cannot be altered unless it is contrary to rules.

The last article of the code provides that the rules of nomenclature may be altered only by competent authors at an expressly convened international congress. Several recommendations are appended urging the exclusive use of the metric system for weights and measurements and the Centigrade method of expressing degrees of temperature; and authors are requested to indicate clearly the scale employed in their illustrations.

The speaker expressed the hope that the new code would lead to uniformity of nomenclature, and thereby save much valuable time for workers in systematic botany, as well as add to the convenience of botanists generally.

The discussion was opened by the Vice-President in the Chair, and carried on by Dr. Stapf, Lieut.-Col. Prain, Mr. John Hopkinson,
Mr. F. N. Williams, the General Secretary, and Mr. Henry Groves, and replied to by Dr. Rendle.

The following papers were read and discussed:

1. "Cyrtandreœ Malayæ insularis novæ." By Dr. Fritz Kränzlin. (Communicated by Dr. Otto Stapf, F.L.S.)
2. "On Characeæ from the Cape collected by Major A. H. Wolley-Dod, R.A." By H. and J. Groves, F.L.S.

January 18th, 1906.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 21st December were read and confirmed.

Mr. Jesse Reeves was admitted a Fellow.
Dr. Edmund Burke, F.Z.S., Dr. William Thomas Calman, F.Z.S., Mr. William Francis Cooper, B.A. Cantab., F.Z.S., F.C.S., and Mr. Walter Draper, were severally elected Fellows.
Miss Nina Frances Layard, Mr. Frank Morey, and Mr. Arthur Ernest Bousfield Steains, were proposed as Fellows.

Mr. William Carruthers, F.R.S., a past-President of the Society, on the part of the following list of Subscribers, presented a portrait of Prof. S. H. Vines, D.Sc., F.R.S., President from 1900 to 1904, painted by the Hon. John Collier, and the President in the Chair accepted the gift on behalf of the Society.

Anderson, Prof. R. J.
Archer-Hind, T. H.
Avebury, The Lord.
Baker, J. G., F.R.S.
Balfour, Prof. I. B., F.R.S.
Barber, C. A.
Bentley, B. H.
Bisset, J.
Blackman, V. H., M.A.
Boodle, L. A.
Bower, Prof. F. O., F.R.S.
Brandis, Sir D., K.C.I.E., F.R.S.
Brown, Dr. H. T., F.R.S.
Burkill, I. H.

Carruthers, W., F.R.S.
Christy, G.
Christy, T.
Clarke, C. B., F.R.S.
Darwin, F., F.R.S.
Drabble, Dr. E.

Druce, G. C., M.A.
Drummond, J. R.
Duthie, J. F.
Dyer, Dr. B. S.
Edwards, S.
Errera, Prof. L.
Evans, Sir John, K.C.B., F.R.S.
Ewart, Dr. A. J.
Forbes, F. B.
Ford, C., I.S.O.
Foster, Sir M., K.C.B., F.R.S.
Fry, G.
Fry, Rt. Hon. Sir E., F.R.S.

Gamble, J. S., F.R.S.
Gardiner, W., F.R.S.
Geffcken, A. W.
Godman, F. D., F.R.S.
Green, Prof. J. Reynolds, F.R.S.
Mr. T. Ernest Waltham exhibited a series of coloured transparencies from flowers in natural colours, partly by the three-colour process, partly by hand. They were shown on frames specially devised, the light being reflected from beneath, and a frame with a stereoscope slid along above the series. One admirable lantern-slide was displayed upon the screen, to show the success of the process. Mr. A. O. Walker and Dr. A. B. Rendle contributed some remarks.

The following papers were read and discussed:—

2. "On some Endophytic Algae." By A. D. Cotton, F.L.S.

3. "On the Organ of Jacobson in Sphenodon." By Dr. R. Broom. (Communicated by Prof. A. Dendy, F.L.S.)
February 1st, 1906.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 18th January were read and confirmed.

Dr. William Thomas Calman was admitted a Fellow.
Mr. Hugh Findon, Mr. James Eustace Radcliffe McDonagh, M.R.C.S., L.R.C.P., Mr. Thomas Hawkes Russell, and Mr. Ernest Justus Schwartz, M.A. Cantab., B.Sc.Lond., were proposed as Fellows.

By special invitation of the Council, Mr. J. Stanley Gardiner, M.A., gave an account of the Percy Sladen Trust Expedition in H.M.S. 'Sealark' to the Indian Ocean, of which he was leader.

In 1904, at the request of the Royal Society, His Majesty's Government agreed to allow the Author to undertake a six months' cruise in H.M.S. 'Sealark' in the following year, to investigate the western part of the Indian Ocean between India and Madagascar. The author was responsible for the whole work, and with Mr. Forster Cooper took charge especially of the biology and geology, while Commander Boyle Somerville and the Officers of H.M.S. 'Sealark' did most of the practical work connected with the oceanography.

Leaving Colombo on May 9, 1905, H.M.S. 'Sealark' proceeded to the Chagos Archipelago, where a stay of two months was made: Salomon, Peros Banhos, Diego Garcia, and Egmont, all ring-shaped reefs with land, were carefully examined, and the first resurveyed on a big scale. The reefs were found to be very largely formed by calcareous algae, and the marine fauna to be singularly poor in species. Numerous soundings were put down between the different atolls and banks, and sections were run off Salomon Atoll, where also a series of dredgings was obtained. The tauts slope off the reefs was very marked, and the bottom between the different banks was found to be current-swept down to 500 fathoms.

The expedition having left Mauritius on August 22nd, the submerged Nazareth and Saya de Malha Banks were examined and dredged. Coetivy was next visited, and its fauna and flora, terrestrial and marine, carefully collected for comparison with the Chagos. The line between Madagascar and Seychelles was then investigated. The low hills of Farquhar were found to be merely sand dunes, while St. Pierre turned out to be a raised coral island. Off Providence specimens were obtained of a volcanic rock, which probably forms the foundation of that coral bank. Alphonse and Desroches were subsequently visited, and the Amirante Bank was carefully dredged; Poivu Darros, St. Joseph, and Eagle Islands also being examined.
In oceanography, tidal, current, meteorological, and magnetic observations were made wherever possible, and serial temperatures and water samples were secured down to 1000 fathoms. The charts were everywhere examined and corrected, and the existence of any shallow connecting bank between India and Madagascar was disproved. About 150 dredgings were run down to 900 fathoms, and plankton was extensively collected by closing and other nets down to 1200 fathoms. The reef faunas and floras were especially collected in the Chagos and at Coetivy in view of the distribution of marine organisms, and the islands everywhere were carefully examined, their land animals and plants being collected as thoroughly as possible.

The President announced that amongst the visitors who had been invited to attend, all the Trustees of the Percy Sladen Trust were present, and he invited their Chairman, Mr. T. Bailey Saunders, to open the discussion. He was followed by Dr. Tempest Anderson and Mr. Henry Bury; discussion was contributed by Dr. G. C. Bourne, who contrasted his own difficulties when in Diego Garcia twenty-five years ago and the facilities at the disposal of Mr. Stanley Gardiner, Dr. G. Herbert Fowler, Dr. N. Wolfenden, Mr. A. P. Young, Mr. W. P. Pyeraft, the President concluding by a few observations, and Mr. Stanley Gardiner replied seriatim to the questions which had been put.

February 15th, 1906.

Dr. A. Smith Woodward, F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 1st February were read and confirmed.

Dr. Tempest Anderson was proposed as a Fellow.
Miss Nina Frances Layard, Mr. Frank Morey, and Mr. Arthur Ernest Bousfield Steains, were severally balloted for and elected Fellows.

Dr. H. C. Bastian, F.R.S., F.L.S., gave a lantern demonstration of the developmental changes in Zoogloea, of which the following is the author's abstract:

Masses of Zoogloea in their early stage were first shown, in which the constituent Bacteria were plainly recognizable. The growth of the masses, their alteration in appearance and in reaction to staining fluids, together with the progressive segmentation which they undergo, were revealed by other specimens. Segmentation was shown to progress till minute spherical or ovoidal units were produced. During the first 3–5 days, while these changes are
occurring, the masses remain colourless and the ultimate segmentation units develop into flagellate Monads or, more rarely, into equally minute Amœbæ—myriads of one or of the other of these forms appearing (all of about the same size) where a few hours before they were absent.

Later, from 5th to 10th day, the ultimate segmentation units of other masses appear as aggregates of brown Fungus-germs. Often the masses as a whole become brown before segmentation has much advanced, and the different stages were shown by which the bacterial aggregates are completely converted into masses of brown Fungus-germs, together with the development of hyphae therefrom. All the stages in the complete conversion of the Zoogloea masses into Monads or Amœbæ in the one case, or into brown Fungus-germs in the other, are clearly recognizable—though it is impossible to say from the appearance of the masses in their early stages which of these three interchangeable forms of life will ultimately be produced.

The Vice-President in the Chair having invited discussion, Prof. Dendy enquired what means were employed to exclude the entrance of foreign germs into the hay-infusion, to which the Author replied.

The following papers were read and discussed:—

1. "The Structure of Isis hippuris (Linnaeus)." By J. J. Simpson. (Communicated by the President.)

March 1st, 1906.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 15th February were read and confirmed.

Miss Catherine Alice Raisin, D.Sc. (Loud.), was proposed as a Fellow.

The vacancies in the List of the Foreign Members caused by the deaths of Prof. A. S. Packard and Prof. R. A. v. Koelliker having been declared, the following were proposed for election in their place:—Oscar Hertwig, Professor of Comparative Anatomy, Berlin University; and Henry Fairfield Osborn, D.Sc., Da Costa Professor of Zoology, Columbia University, New York.
Miss Nina Frances Layard, Mr. Frank Morey, and Mr. Arthur Ernest Bousfield Steains, and later, after election, Mr. Robert Hawkes Russell, were admitted Fellows.

Mr. Hugh Findon, Mr. James Eustace Radcliffe McDonagh, Mr. Thomas Hawkes Russell, and Mr. Ernest Justus Schwartz were severally balloted for and elected Fellows.

Dr. D. H. Scott, F.R.S., Sec.L.S., described "A New Type of Stem [Sutcliffia] from the Coal-Measures."

Prof. F. W. Oliver, Mr. W. C. Worsdell, Prof. A. G. Tansley, and the President joined in a discussion, and the Author replied.

The following papers were read and discussed:

1. "Notes on some Species of Nereis in the District of the Thames Estuary." By Dr. H. C. Sorby, F.R.S., F.L.S.

March 15th, 1906.

Prof. W. A. Herdman, F.R.S., President in the Chair.

The Minutes of the General Meeting of the 1st March were read and confirmed.

Mr. Hugh Findon, Mr. James Eustace Radcliffe McDonagh, and Mr. Ernest Justus Schwartz were admitted.

Mr. Dhirendra Lal Day, M.A., B.Sc., and Colonel John William Yerbury, late R.A., were proposed as Fellows.

Dr. Tempest Anderson was elected a Fellow.

A letter from Dr. Chr. Aurivillius, Secretary of the Kungl. Svenska Vetenskapsakademien, Stockholm, was read, in which presentation was made of copies by Jean Haagen of the portraits of Carl von Linné by Per Krafft the elder, and Alexander Roslin, in possession of the Academy, sent in acknowledgment of the loan of Linné's 'Philosophia Botanica' interleaved and annotated by the author, which had been returned a few weeks ago through the Swedish Legation. A special vote of thanks for this most acceptable gift was moved from the Chair, and carried unanimously.

Dr. D. H. Scott, F.R.S., Sec.L.S., read a communication from Dr. R. Zeiller, F.M.L.S., conveying his good wishes for a successful discussion that evening, which he had been invited to open, but was prevented by his professorial duties at the École Nationale Supérieure des Mines, Paris.
Prof. F. W. Oliver, F.R.S., F.L.S., then opened the announced discussion on "The Origin of Gymnosperms." (See p. 53.)

Mr. E. A. Newell Arber, F.L.S., followed, on the "Earlier Geological Record of the True Ferns." (See p. 54.)

Mr. A. C. Seward, F.R.S., F.L.S., then spoke on "The Evolution of Gymnosperms: the Position and Ancestry of the Araucarieae." (See p. 56.)

The discussion was then adjourned to 3rd May, 1906.

April 5th, 1906.

Dr. A. Smith Woodward, F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 15th March were read and confirmed.

Dr. Robert Brown, of Glasgow, and Mr. Henry John Waddington, of Bournemouth, were proposed as Fellows.
Miss Catherine Alice Raisin, D.Sc.Lond., was elected a Fellow.

Dr. Horace T. Brown, F.R.S., and Mr. Frank Crisp were proposed as Auditors on behalf of the Council, and the Rev. R. Ashington Bullen and Mr. John Hopkinson on behalf of the Fellows, and by show of hands were duly elected.

Mr. Clement Reid, F.R.S., exhibited nearly 50 photographs, entitled "Some Plants new to the Preglacial Flora of Great Britain." He explained that these were derived from material procured at Pakefield, near Lowestoft, and had occasioned many months' continuous labour on the part of Mrs. Reid and himself. On a former occasion (April 21st, 1904) he had shown a series of drawings from the fruits, obtained by breaking up the matrix and selecting the liberated specimens; but this process was tedious and unsatisfactory, and he had resorted to photography. The remains were black, and therefore troublesome to photograph, but the specimens themselves could not long be preserved, as an efflorescence occurred, and they fell to pieces, but experiments were now being conducted with a view of permeating the fruits with paraffin, and so ensuring their preservation.

After some introductory remarks from the Vice-President in the Chair, a discussion followed, in which Count Solms-Laubach, F.M.L.S., Mr. H. W. Monckton, Dr. Henry Woodward, F.R.S.
The following papers were read and discussed:

2. "The Structure of the Stem and Leaf of Nuytsia floribunda, R. Br." By E. J. Schwartz, F.L.S. (See p. 57.)
3. "On Taiwanites [afterwards changed to Taiwania], a new genus of Coniferae from the Island of Formosa." By B. Hayata. (Communicated by Dr. Maxwell T. Masters, F.R.S., F.L.S.)

May 3rd, 1906.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 5th April were read and confirmed.

Miss Catherine Alice Raisin, D.Sc., was admitted a Fellow.
Mr. Henry Robert Knipe, LL.B.Cantab., and Miss Evelyn Janie Welsford, were proposed as Fellows.
Mr. Dhirendra Lal Day, M.A., B.Sc., and Colonel John William Yerbury, were elected Fellows; and Professor Oscar Hertwig, of Berlin, and Professor Henry Fairfield Osborn, of New York, were elected Foreign Members.

The President exhibited a tube of small pearls obtained from Mytilus edulis at Port Erin a short time previously.

Dr. D. H. Scott, F.R.S., Sec.L.S., then resumed the discussion on the "Origin of Gymnosperms" adjourned from the 15th March, by an address on "The Affinities of Pteridosperms and Gymnosperms." (See p. 57.)

The President having contributed a few remarks, then invited Mr. Boyd Thomson, of Toronto, who was present as a visitor, to open the general discussion. He was followed by Mr. William Carruthers, F.R.S., Prof. F. E. Weiss, Dr. A. B. Rendle, Mr. W. C. Worsdell, and Miss E. N. Thomas (a visitor). Prof. F. W. Oliver, F.R.S., and Mr. A. C. Seward, F.R.S., then replied, the President closing the discussion.
May 24th, 1906.

Anniversary Meeting.

Prof. W. A. Herdman, F.R.S., President, in the Chair.

The Minutes of the General Meeting of the 3rd May were read and confirmed.

Dr. Tempest Anderson was admitted a Fellow.
Mr. Henry Edward Houghton and Mr. Thomas Fox were proposed as Fellows.

The Treasurer then submitted the Statement of Accounts for the year ended 30th April, as audited, and commented on the various items. (See p. 16.) Mr. Henry Groves remarked on the satisfactory financial aspect of the Statement, but suggested that some Trustee security yielding more revenue than Consols might be chosen for investment. The Accounts on the President's motion were then approved by the Meeting.

The General Secretary read his report of deaths, withdrawals, and elections as follows:

Since the last Anniversary 18 Fellows have died or their deaths been ascertained:

Mr. Edward Atkinson. | Mr. Frederick Lovell Keays.
Mr. John Bidgood. | Sir Robert Lloyd Patterson.
Mr. George Bowdler Buckton. | Mr. William Phillips.
Mr. Vincent Ind Chamberlain. | Mr. Richard Rimmer.
Mr. Thomas Christy. | Mrs. Constance Percy Sladen.
Rt. Hon. Sir Mountstuart El- | Mr. Frederick Townsend.
 phinstone Grant Duff. | Prof. Walter Frank Raphael
Mr. Frederick John Horniman. | Mr. William Watson-Will.

FOREIGN MEMBER (1).

Dr. R. Albert von Koelliker.

The following 9 Fellows have withdrawn:

Mr. Frederick Howard Collins. | Mr. George Payne.
Mr. William Dennis. | Mr. Charles William Slater.
Mr. Charles French. | Mr. John Watson.
Mr. William Henry Heathcote. | Mr. Henry Williams.
Rev. Willis Fleming Aston |
Receipts and Payments of the Linnean Society from May 1st, 1905, to April 30th, 1906.

<table>
<thead>
<tr>
<th>Receipts</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Balance at Bankers on the 1st May, 1905</td>
<td>283</td>
<td>18</td>
<td>10</td>
</tr>
<tr>
<td>Interest on Investments</td>
<td>187</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Admission Fees</td>
<td>168</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Annual Contributions</td>
<td>1541</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Compositions</td>
<td>180</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sales of Publications:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Transactions</td>
<td>79</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>Journals</td>
<td>123</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Proceedings and Catalogues</td>
<td>3</td>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>Miscellaneous Receipts</td>
<td>91</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>2658</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payments</th>
<th>£</th>
<th>s.</th>
<th>d.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taxes and Insurance</td>
<td>10</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Repairs and Furniture</td>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Coals and Gas</td>
<td>53</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Salaries</td>
<td>738</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Library:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Books</td>
<td>195</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Binding</td>
<td>122</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>318</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Expenses of Publications:</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Printing</td>
<td>566</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>Illustrations</td>
<td>128</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>Distribution</td>
<td>51</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>746</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Miscellaneous Printing and Stationery	27	6	0
Petty Expenses (including Tea and Postage)	119	8	4
Investment of Compositions	150	0	0
Balance at Bankers, 30th April, 1906	361	3	4
Total	2658	4	7

<table>
<thead>
<tr>
<th>Investments on April 30th, 1906.</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Consols, 2½ per cent.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metropolitan Board of Works 3½ per cent. Stock</td>
<td>4380</td>
<td>16</td>
<td>5 @ 90½</td>
</tr>
<tr>
<td>Great Indian Peninsula Railway, Annuity Class B</td>
<td>1079</td>
<td>11</td>
<td>3 @ 103½</td>
</tr>
<tr>
<td>Forth Bridge Railway 4 per cent. Stock</td>
<td>42</td>
<td>1</td>
<td>5 @ 20½</td>
</tr>
<tr>
<td>Consols (Westwood Bequest), 2½ per cent.</td>
<td>450</td>
<td>0</td>
<td>0 @ 116</td>
</tr>
<tr>
<td></td>
<td>249</td>
<td>3</td>
<td>8 @ 90½</td>
</tr>
<tr>
<td>Total</td>
<td>3953</td>
<td>13</td>
<td>9</td>
</tr>
</tbody>
</table>

HORACE W. MONKTON, Treasurer.

We have (in conjunction with the Professional Auditor, who certifies as to all details) audited the Accounts of the Society for the year ended 30th April, 1906, and found them correct.

R. ASHTON BULLEN,
B. DAYDON JACKSON,
HORACE T. BROWN,
W. B. KEEN, Chartered Accountant.

JOHN HOPKINSON,
FRANK CRISP,
Auditors.
The following have been removed from the List of Fellows, under the provisions of the Bye-Laws, Chapter II., Section 6:

Mr. Ernest J. Bickford. | Mr. Harvey St. John Jackson.
Mr. Edward Russell Budden. | Mr. Thomas W. Kirk.
Mr. John William Willis Bund. | Mr. George Robert Milne Murray.
Mr. Edward A. Fitch.

One Fellow, Mr. Robert Morton Middleton, has been reinstated in the List, the annulment of his withdrawal not being received until after its announcement.

Twenty Fellows have been elected (of whom 19 have qualified), and two Foreign Members.

The Librarian's report was put in and read as follows:

During the past year, 76 Volumes and 257 Pamphlets have been received as Donations from Private Individuals.

From the various Universities, Academies, and Scientific Societies 301 volumes and 114 detached parts have been received in exchange and otherwise, besides 70 volumes and 30 parts obtained by exchange and as Donations from the Editors and Proprietors of independent Periodicals.

The Council have sanctioned the purchase of 137 volumes and 97 parts of important works.

The total additions to the Library are therefore 634 volumes and 498 separate parts.

The number of Books bound during the year is as follows:

In half-morocco 295 volumes, in half-calf 6 volumes, in full cloth 226 volumes, in vellum 26 volumes, in buckram 46 volumes, in boards or half-cloth 18 volumes. Relabelled (half-morocco and cloth backs) 60 volumes. Total 677 volumes.

The General Secretary having read the Bye-Laws governing the Elections, the President opened the business of the day, and the Fellows present proceeded to vote for the Council and Officers.

The President then delivered his Address.
PRESIDENTIAL ADDRESS.

Fellows of the Linnean Society,—

Let me thank you most heartily for your kindness in electing me as your President for a second Session. A more extended acquaintance with the work of the office has by no means diminished my sense of the difficulties that surround the position. The honour carries with it a considerable weight of responsibility, which, I am thankful to say, is shared to the full by my colleagues the Treasurer and the Secretaries—to all of whom I am much indebted for effective support and kindly consideration.

The past Session, I think I may say, has been an interesting but an uneventful one. We cannot have every year such great advances in the Constitution and Fellowship of the Society as it fell to my lot to record on our last Anniversary. The Supplemental Charter and the new Bye-Laws are historic landmarks that do their beneficent work for the Society silently and for the most part unnoticed. Our lady-Fellows, on the other hand, I am glad to say have made their presence felt both as authors and in debate. We have had further accessions of duly qualified scientific women during this Session, and we may be sure that every such admission is a strength to the Society. When they bring their work before us we shall appreciate still further the added gain.

Every biologist, man or woman, engaged in original work ought to belong to the Linnean Society—it is their natural destiny, their scientific home. There must be many outside the fold who would be glad to enter if piloted by a friendly hand, and whom we should be glad to welcome when satisfied of their qualifications and of their desire to join us in advancing Natural Science. I commend the idea—the further extension of our Fellowship by the introduction of suitable candidates—to the careful personal consideration of each and every Fellow.

In last year's Address I alluded to the retirement of Mr. Crisp from the office of Treasurer, which he had held with great advantage to the Society for over twenty years. We are fortunate in having appointed as his successor Mr. Horace W. Monckton, whom we now welcome and congratulate on the first anniversary meeting since his appointment.

In all 26 new Fellows have joined the Society this Session—after the extraordinary accession of last year we return to normal numbers. On the other side there are the inevitable losses. We have this year to regret the death of 17 Ordinary Fellows and
of one on the Foreign list; the latter being the illustrious and veteran Zoologist of Würzburg, Professor Rudolph Albert von Kölliker—recipient of the Linnean Medal in 1902.

The obituaries of our late Fellows have been prepared by the Secretaries, and will be presented to the Society in the usual manner. I do not propose to detain you by traversing the same ground, but will merely make a passing reference to two special cases.

In Mrs. Constance Percy-Sladen we lose one who had recently become a great benefactor of Science, and had founded a noble memorial of her late husband, at one time Zoological Secretary of the Linnean Society. Her interest in this Society was great, she was gratified at being admitted to our Fellowship, she was present at one of our meetings last session, and the sad news of her death was received only a few days before the meeting appointed for the reception of the preliminary account of the first Percy-Sladen Exploring Expedition promoted by the Trust that Mrs. Sladen had founded. It is no great secret, I believe, that when the Indian Ocean was omitted from the great oceanic areas explored during the ‘Challenger’ Expedition, Mr. Percy Sladen was one of those who earnestly hoped that some other public or private expedition would be organised to make good the omission: and that later on in life he and his wife talked of planning and promoting such an exploration themselves. Sladen did not live to carry out the plan, but the Trust founded by his widow adopted as its first venture an expedition under the leadership of Mr. Stanley Gardiner, which seemed to have that very purpose in view, and which we now know has been successfully accomplished. The name borne by our late Fellow and her husband, our former Secretary, will in the future be a familiar word in Science, and especially in our Society, as a result of the explorations supported by the Percy-Sladen Trust.

The recent terribly sudden death of Professor Weldon removes from our Society one of the most distinguished of Zoologists, still in the prime of life and in the fulness of work. Of extraordinary vigour as a lecturer and debater, full of keenness in every research that he undertook, deeply interested in the advancement of all that is best in scientific life, and having transcendent ability and superabundant energy, he was able to accomplish much in his too short working life—and it is almost impossible yet to realise that he has left his work unfinished and that other hands must now carry on what his fertile and enthusiastic mind had planned. His early death is a serious blow to Biological Science in this country, which has suffered many unexpected losses during the last quarter century—since the tragic death of Professor F. M. Balfour on the Alps in 1882.

The Howes Memorial Fund started by the Officers of this Society and other colleagues and friends of our late Zoological Secretary has now been closed, a Trust-deed has been prepared,
Trustees have been appointed, and a report upon the amount and destination of the fund has been issued by the Committee to all subscribers.

The two vacant places in our list of Foreign Members this year have been filled by the election of Professor Oscar Hertwig of Berlin, and Professor Henry Fairfield Osborn of New York. It is a matter of congratulation to the Society that these distinguished names have been added to our roll.

The Council have awarded the Linnean Medal on this occasion to the Reverend Canon A. M. Norman, F.R.S., the veteran Naturalist who has made additions to nearly every group of the British Marine Fauna. This is perhaps the highest distinction we can confer; and we are honoured by the growing list of eminent men of science whose fair fame it links to that of our Society. Last year the medal was conferred upon a distinguished foreign Botanist. This year we honour one of our own Fellows who has done much for British Science.

One of the events of the Session has been the discussion on "The Origin of Gymnosperms," which extended over two meetings. We had hoped when the proposal first came before Council that this debate might be inaugurated by our Foreign Member, Dr. R. Zeiller of Paris. However, that eventually proved impossible, and the discussion was opened on March 15th by Professor F. W. Oliver, Mr. Newell Arber, and Mr. A. C. Seward, and on May 3rd by Dr. D. H. Scott—after which others took part in a most spirited and illuminating debate.

Amongst important matters which have engaged the attention of your Council this Session, I may mention the arrangement under which we have undertaken to publish, with a certain amount of outside help, the series of Reports upon the Percy-Sladen Expedition to the western part of the Indian Ocean, under the leadership of Mr. Stanley Gardiner, in H.M. ship 'Sealark'; and also the Reports upon the Collections made by Mr. Cyril Crossland upon the Sudan Coast of the Red Sea. I consider it a natural thing that the results of biological exploring expeditions should come before the Linnean Society, and our publications in the past have contained several such series of Reports, which have been a credit to science and have enhanced the reputation of our Society. As examples, we may recall the series of papers on the Fauna of the Mergui Archipelago, in volumes 21 and 22 of the Zoological Journal, and the "Enumeration of the Chinese Flora," lately completed after a run of 20 years through volumes 23, 26, and 36 of the Botanical Journal.

To my mind, in undertaking such work we are performing an important function in Biology. The publication of the results of a great exploration, such as Mr. Stanley Gardiner's expedition down the Indian Ocean from Ceylon, through the Chagos Archipelago, Mauritius, Coetivy and various submerged banks to the
Seychelles, has undoubtedly been, would be creditable to any Society; and when that exploration is a biological one, dealing with land plants and marine algae as well as with deep-sea animals, and with general problems of distribution and association and habitat such as concern both sides of our house, it is difficult to see what Society could more appropriately undertake the task than our own. The Sladen Trust has made a financial offer to our Council which will meet half the expenses of the publication, and we may look forward to receiving as Fellows a special series of about six extra volumes of our 'Transactions' devoted to the Fauna and Flora of the Indian Ocean.

Committees appointed by the Council are now deliberating on such important matters as Zoological Nomenclature, the destiny of the Wallichian Herbarium, and the form of our Publications—subjects of interest to all of us.

This review of some of the chief events of the Session will perhaps serve to show that the Linnean Society is still performing important functions in the advancement of Natural Science; and that your Council has its hands full of interesting work requiring careful attention.

In my Address last year I chose for some further remarks the historic connection between the production of artificial pearls and the great Linnaeus, whose reputed birthday we commemorate at this Anniversary Meeting; and that enabled me to treat briefly of one side of the interesting biological process known as "pearl-formation." I propose on the present occasion to complete the subject, so far as I am able, by discussing briefly the other methods of pearl-formation apparently unknown to Linnaeus.

I pointed out last year that "there are three main methods which have been advanced as explaining the formation of pearls; and, as is so often the case where there are several competing theories, it cannot be said that one only is correct and of universal application, and that the others are quite erroneous. The three I refer to are:—(1) the grain-of-sand irritation; (2) the pathological secretion; and (3) the stimulation caused by the presence of a parasitic worm, which acts as a nucleus around which an epithelial sac deposits successive layers of pearly material." I discussed sufficiently on that occasion the grain-of-sand theory, both as accounting for some pearls in Nature, and also in its application to the artificial pearls produced by Linnaeus from the fresh-water mussels in Sweden. It may be that there is a future before such semi-artificial methods. If so, I am convinced that the process will consist essentially in pushing in before the inorganic nucleus a portion of the nacre-secreting ectoderm covering the mantle, so as to form an epithelial sac in which the pearl will be produced. But this method occurs rarely in Nature; and I now pass to the process of pearl-production which is stimulated by a parasitic worm, and which results in the finest Orient pearls. I shall not
recount again the early history of this discovery, but the Linnean Society may care to be reminded that the first in this country to connect Trematode parasites with pearls in mussels was one of our Fellows, Robert Garner, whose paper on the subject will be found in our Journal for 1871; and I may add that still earlier in the last century another of our Fellows, Dr. E. F. Kelaart, accounted for pearls in the Ceylon Pearl-Oyster by the presence of platyhelminthian worms.

Coming now to more recent work, especially during the last four or five years, we must examine the matter more minutely. The recent activity in this subject originated in France, and we associate with the investigations there the names of our Foreign Member Giard, of Dubois, Boutan, and Seurat. Giard had ascribed pearl-formation in the case of *Donax* and other Lamellibranchs to a Distomid worm, which he supposed to be a species of *Brachycelestum*, but has since identified as *Distomum constrictum*, Mehlis; when Dubois, in 1901, visited a mussel-bed, near Billiers (Morbihan) on the south coast of Brittany, which was known to be rich in pearls, and attributed the pearl-production to the presence of a Trematode larva which he named *Distomum margaritarum*. The next year, H. Lyster Jameson followed with a more detailed account of the relation existing between the pearls in *Mytilus edulis* and the Distomid larva, which he, like others, found, and which he identifies as belonging to the species *Distomum (Brachycelestum) somaterico*, the same subgenus as Giard had found in *Donax* some years before. Jameson’s observations were made first at Billiers, the locality where Dubois had worked, and partly at the Lancashire Sea-Fisheries Laboratory of Piel in the Barrow Channel. Dubois published a further note * in January 1903, by way of establishing his claim to have first made known the dependence of the pearls at Billiers upon the Distomid larva. In regard to the identification of the species of Trematode involved, Odhner has recently shown that Jameson’s larval stages and his sexually mature form cannot belong to the same species, and that both belong to the genus *Gymnophallus*.

The adult, according to Odhner †, is *Gymnophallus somaterico* (Levinsen), and the larval form which causes the pearl-formation in *Mytilus* belongs to *Gymnophallus bursicola*, Odhner. In a still more recent paper ‡ Lühe also refers Jameson’s stages to different species of *Gymnophallus*, but considers it probable that the one causing the pearl-formation in the mussel is a distinct species which must be called *Gymnophallus margaritarum* (Dubois). Jameson’s work may be said to have established quite clearly, if any doubt previously remained, that in our common marine mussel Trematodes are the parasites concerned in pearl-formation.

There are, however, two points which were left in a somewhat

† Fauna Arctica, iv, p. 291 (1905).
‡ ‘Ueber die Entstehung der Perlen.’
unsatisfactory condition, viz.:—(1) the supposed transference of the parasite from another Molluscan host (Tapes or the Cockle) to the Mussel, and (2) the mode of origin of the epithelial sac which encloses the larval parasite and secretes the pearl. As I am discussing these two points in some detail in the forthcoming Part V. of my Ceylon Report, I shall not go into the matter here beyond saying that Jameson, although drawing attention to the similarity between the epithelium of the pearl-sac and that of the outer surface of the mantle, evidently considered that the two layers are not genetically related. He states definitely in regard to the pearl-sac, “this epithelium appears to arise quite independently of the outer epidermis.” Boutan, in France, has written* controverting this independence, and contrasting Jameson’s view of a mesodermal origin with his own view (which, I may add, I entirely agree with) that the two epithelia are genetically related, and that the pearl-sac must arise from the exactly similar cells of the ectoderm. It is highly probable that the parasite in burrowing into the mantle carries in with it one or more epidermal cells which proliferate to form the sac. As the Distomid larvae are found moving on the inner surface of the shell before coming to rest in the mantle, they must traverse the epidermis, and it is natural to suppose that in their migration they may push some epidermal cells in before them. Even in the absence of direct evidence of this (and we have some evidence) it will be admitted that the process does not involve such a violent assumption as that the connective tissue in the centre of the mantle can produce an epithelial sac, the cells of which are indistinguishable both in structure and in function from the epidermis outside.

In order that I might make certain how far our views really differed, I thought it worth while lately to exchange letters on the matter with Dr. Jameson, who is now in charge of the Biological department of the Transvaal Technical Institute at Johannesburg; and his answer, received a week or two ago, contains the following passage, which he evidently wishes me to make public:—“I am very glad to have the opportunity of clearing up, through you, the uncertainty caused by my unintentionally ambiguous statements re origin of pearl-sac epithelium. I had never any doubt that it is a true epidermis, but I never got so far as to determine actually by observation whether it arose, as I think you have suggested, by the Trematode carrying in with it a fragment or pocket of epidermis; or, as I suspected, by means of epidermal or sub-epidermal replacement cells (Ersatz-Zellen) which are known to occur in many invertebrates, often in sub-epidermal tissues, and which replace epidermal cells if they are injured. I left the question open in my paper because I hoped to make some experiments on the nature of the epidermal cells; indeed, I had actually started these experiments when the temporary breakdown of my health necessitated my dropping the work, and as you know,

since I came out here I have had no chance to continue my pearl-work."

From this it seems clear that Dr. Jameson would now agree with his critics (such as Boutan); and in fact I take it that all who are working on the subject are now agreed that the epithelium of the sac secreting the pearl must be derived, directly or indirectly, from the nacre-secreting ectoderm covering the outside of the mantle.

To return to the French investigators, Dubois, whose first observations were made in Brittany (1901), has since turned his attention to the Mediterranean Coast. He there finds that the Southern French Mussel (*Mytilus gallo-provincialis*) forms pearls caused by another species of Distomid. He then worked at the aclimatization of a true Oriental pearl-oyster ("pintadine") in French waters and the artificial production of pearls. He brought the pearl-oysters from the Gulf of Gabes in Tunis to the Marine Laboratory at Sfax, and caused them to multiply and increase in size. The pearls produced in Tunis are small and very rare—it is necessary to open 1200 to 1500 oysters to find one pearl; but Dubois tells us (C. R. 19 Oct. 1903, p. 611) that by placing them on ground where *Mytilus gallo-provincialis* becomes infested with pearls and parasites, he very easily provoked the production of fine pearls in the "pintadine" to such an extent that three successive individuals opened contained each two little pearls.

This, if corroborated, is a remarkable circumstance from several points of view. First, it will, if it proves a success, be a striking verification of what Kelaart in Ceylon, fifty years ago, declared might be done when he said—"It may yet be found possible to infect oysters in other beds with these worms, and thus increase the quantity of these gems." Secondly, if the "pintadine" in question is really the same species as the Ceylon Pearl-Oyster (Giard considers that it is not), it is curious that a Distomid parasite should prove to be so efficacious in setting up pearl-formation, since Mr. Hornell and I found that, in the Gulf of Manaar, the pearl-parasite is a Cestode larva. Thirdly, it is remarkable that the parasite of the *Mytilus* should transfer itself so readily to a new host belonging to a distinct family.

It is this last paper by Dubois that has given rise to various more or less exaggerated or even erroneous statements in the public press—such as that the pearl-oyster must be infected with a microscopic germ in order to render it pearl-producing; or even that inoculation with a serum causes the oyster to produce artificial pearls. The parasite that causes the irritation is, as has been known for many years, not a "germ," and still less a "serum," but a worm which is visible to the eye—a worm which in *Mytilus* seems to be usually a Trematode, and in the Ceylon Pearl-Oyster (*Margaritifera vulgaris*), according to Mr. Hornell's and my observations, is certainly a Cestode.
According to an interesting note by Prof. Giard *, the discovery of Cestode larvae as nuclei of pearls, which we had made upon the Ceylon Pearl-Oyster in 1902, was shortly afterwards corroborated by Dr. L. G. Seurat, working independently in his Laboratory at Rikitea in the island of Mangareva (Gambier Archipelago). The oyster on which Seurat worked was Margaritifera margaritifera, var. cumingi, Reeve, and the Cestode parasite found is, according to Giard, an Acrobothrium (= Cyathocephalus) or some allied form. It is possible that some of our Ceylon Pearl-Oyster parasites may also belong to the genus Cyathocephalus, although most of them are certainly Tetrarhynchids.

Giard in a further note in the same Journal (p. 1225) discusses the statements that have been made in regard to "margarose artificielle," and evidently considers that Dubois's claim to have established the artificial production of pearls is not yet justified by the facts. Last of all Boutan † shows that "fine pearls" do not really differ from "nacre-pearls" since both are secreted from open or closed epithelial sacs derived from the epidermis; and Giard very properly replies a few days later ‡ that this fact is quite in accord with general principles, and was previously known. M. Boutan in a letter (20th Jan. 1904) states that he is on the point of departure for the East in order to investigate the matter further. But so far as I am aware, he has as yet made no further contribution to the subject.

In what I told you of Linnaeus and pearls last year, the pearl-forming mollusc was a freshwater mussel of the genus Unio. In the greater part of what I have told you now of the recent investigations on the coasts of France and England, the molluscs in question belong to the genus Mytilus. But the pearl-formation in which I personally have taken most interest, and which is of the greatest importance to the pearl-merchant, is the Ceylon Pearl-Oyster belonging to the genus Margaritifera,—and to that I now pass.

I desire to pay passing tribute to the work of a pioneer. It was Dr. Kelaart who, in the Gulf of Manaar, half a century ago, first connected pearl-formation in a true pearl-oyster with the presence of Vermian parasites. In his 'Introductory Report on the Natural History of the Pearl-Oyster in Ceylon' (1857), after describing the secretion of nacre by the mantle, he said:—"It will be thus clearly understood that when a grain of sand or the larva of an insect is introduced between the mantle and shell, it will become covered over with the pearly secretion, which, always going on, is augmented at the part where the foreign matter lies. This phenomenon I have detected with the aid of the microscope in its very earliest stage." The probability is that by "larva of

an insect” in this passage Kelaart meant such an organism as the Cestode larva, which we now find is the determining cause of such pearl-formation. There are other passages on which there is not time to comment which show that Kelaart was tackling the problem in a scientific manner when his work on the subject was tragically interrupted by his sudden death in the Red Sea in 1859.

Thurston, in 1894, confirmed Kelaart so far as regards finding in the tissues and also in the alimentary canal of the Ceylon pearl-oyster the “larvae of some Platyhelminthian (flat-worm),” but he was able to add little beyond figuring a couple of parasites encysted in the body. Here the matter practically rested so far as actual investigation of the Ceylon pearl-oyster was concerned, until Mr. Hornell and I found the Cestode larvae in association with pearls in the liver and gonads during our cruises in the steamer ‘Lady Havelock’ in the Gulf of Mannar during February and March 1902. It was about March 6th, when cutting up oysters on the western part of the Cheval Paar, that we first became convinced that the opaque white globular larvae we were finding encysted in the liver belonged to Cestode worms. Subsequent work showed us that some of them at least were referable to the genus Tetra-rhynchus, and the various stages that we were able to find up to the spring of 1904 were described by Shipley and Hornell in the second volume of the Ceylon Report (p. 79). Since then large numbers of pearl-oysters from various localities in the Gulf of Mannar have been examined by Mr. Hornell in the field, and many parasites and small pearls from these oysters have been investigated by myself and my assistants in the laboratory. Although the work is by no means complete, we have come to certain definite conclusions, which will be published in the forthcoming fifth and last volume of the Ceylon Report (Royal Society, 1906).

The youngest stages in the life-history of our Tetra-rhynchus are still unknown, and it is still uncertain whether some free-swimming larvae caught in the tow-net on the Muttuvaratu Paar just over the infected oysters really belong to this life-history. They have calcareous corpuscles of the right appearance, and an indication of the invaginated anterior end which we find in our later stages, and they are almost certainly young Cestodes. One cannot add materially to the statement of Shipley and Hornell: “On the whole we think it probable that this larva is the first stage in the life-history of the pearl-forming organism.” The next stages occur freely in the body of the pearl-oyster, where we find more or less globular larvae of various sizes encysted in various parts of the body—the smaller ones mostly in the mantle and the gills, and larger ones in the liver and gonads and also sometimes in the mantle. In referring all these larvae to the Cestoda we rely upon the following four characteristics:—

1. The invagination to form the head of the adult worm.
2. The hooks upon portions of the invaginated surface.
3. The calcareous corpuscles in the walls of the vesicle.
4. The division of the (? muscular) tissue, in the floor of the invagination into several masses which probably represent bothria.

The possession of all these characters together definitely stamps the organisms as larval Cestodes.

The majority of these Cestode larvæ in the tissues of the Oyster do not die to become entombed in the costly sarcophagus which we know as a pearl. Probably it is only those that are provided with an ectodermal covering forming a pearl-sac that become sacrificed for the profit of man and adornment of women. The rest grow to some extent in the pearl-oyster, and then await, encysted in the tissues but alive, their legitimate further development in the next host when their sheltering molluse is devoured by a fish. In such cysts and around such parasites we find no epithelial sac, and as a consequence there can be no deposition of pearly matter. Whether or not it is the case that only dead parasites supply the stimulus necessary to induce pearl-formation, and whether, as Giard has suggested, the parasites may be infested and killed by a species of the protozoon Glugea, so that that Sporozoan comes to be eventually responsible for the pearl, I am not yet prepared to say—the Ceylon material has yielded no fresh evidence bearing upon that point. It seems clear, however, that the epithelial sac is always associated with pearl-formation, and that, in the absence of the epithelium, only a thick-walled connective-tissue cyst is produced. If we adopt the view (stated above) that this epithelium is genetically related to the ectoderm, then a possible explanation of the difference in behaviour in the encysted condition would be that those larvæ that carried in ectodermal cells before them became covered (when dead or while still alive) by a pearl-sac and embedded in a pearl, while those that were free from ectoderm became surrounded by the connective-tissue cyst, and remained alive to perpetuate the race by reaching a final host.

In the first account I gave of these Ceylon parasites, it was suggested that the next stage after that found in the pearl-oyster occurred in a species of Balistes (which is sometimes found feeding on the oysters), and that the adult worm inhabited one of the large Elasmobranch fishes (Sting-Rays and Eagle-Rays) which frequent the Pearl Banks. Shipley has now identified as the adult of our Tetrarhynchus unionifactor a parasite that we found in the Great Ray, Rhinoptera javanica*, the "Walwadi tirikkai" of the Tamils, which is known to feed sometimes upon pearl-oysters and sometimes upon fish. No fresh light has been thrown upon the possible occurrence of an intermediate (late immature) stage in the Balistes (which eats the oysters and in its turn is eaten by the large rays); and although that intermediate host may not be absolutely necessary

* See the Section on Parasites by Shipley and Hornell in the forthcoming Part V. of the Ceylon Report.
The huge fish, then, which devastates our Pearl Banks is all-important in passing on to future generations of the oysters which it devours the parasite upon which pearl-production depends. No one knowing the facts could advocate the destruction or even the exclusion of this particular enemy of the pearl-oyster. If the rays increase much in number the beds of oysters will be decimated if not exterminated, and the pearl-fisheries ruined; and, on the other hand, if the rays are greatly reduced in number the parasites will be likewise reduced, and although the oysters may flourish they will have few pearls and the fisheries again will be ruined—so intricate and nicely balanced are sometimes the processes of Nature.

The further question then arises—Can we profitably follow up Kelaart's suggestion that it might be possible to increase the number of pearls by infecting the molluscs with the appropriate parasites? This "Margarose artificielle" has been tried, as we have shown above, by Dubois in a case where the parasite was supposed to migrate from one mollusc (a Mytilus) to another of a different genus (Margaritifera). Girard and others have pointed out the difficulties in the way of accepting this case and the doubts that naturally arise, and we are probably correct in concluding that the method has not as yet resulted in a marked success on the southern coast of France; although it is quite possible that similar methods with other shell-fish elsewhere may give good results.

On the Ceylon pearl-banks, however, it is probably quite unnecessary under present conditions to take any steps to ensure infection with the appropriate parasite. Oysters wherever they appear, when they are old enough, contain pearls, and encysted parasites are even more abundant. Even when new beds are formed artificially by transplanting to unoccupied ground, as we do not doubt will be the case in the future, this may be done with perfect confidence that when the four-year-old oyster is fished it will contain the normal* supply of pearls. The parasites are probably so widely spread that every pearl-oyster in the Gulf of Mannar, or for that matter around the coast of Ceylon, runs a fair chance of becoming infected. Cyst-pearls are found in the oysters at Trincomalee; the fishes that are, in all probability, the hosts of the parasite in its more advanced stages also abound at various points. It is the molluscan host, and not the parasite, that stands in need of artificial aid in Ceylon. If we can increase

* Of course, some beds are richer in pearls than others and some years are better than others.
the number of beds, and can prevent catastrophes from devastating the oyster-populations, so that the divers can collect the spoil annually in their tens of millions, we need not fear any scarcity of pearls.

As Boutan, who thinks favourably of artificial methods, points out*: "Mais il ne faut pas oublier que l'infection d'un animal par un parasite ne favorise pas précisément le développement normal du sujet infesté." He advocates as an alternative method experimental trepanning of the shell, but that or any other mode of individual treatment is clearly impracticable in dealing with the millions of the Ceylon pearl-banks. My own opinion is that, although all pearl-production is a departure from the normal, the pearl-inducing parasites are not sufficiently abundant to affect seriously the health of the oyster; and that, to reverse the popular saying, if we attend to the prosperity of the bed as a whole, the individual oysters may be left to take care of themselves, both in regard to health and pearl-production.

I quoted last year Linnaeus's statement, made in connection with his process of artificial pearl-formation:—"As all the knacks of Nature are very simple, so is this when properly hit upon." It was certainly much simpler † than the "knack of Nature" I have just discussed, requiring a parasitic worm and several successive hosts, which we now believe is necessary to produce the finest Oriental pearls. And although I hope we have now "properly hit upon" this "knack of Nature," I do not for a moment suppose that the subject is exhausted. There is still much to be investigated. Mr. Hornell, another Fellow of our Society, is now Inspector of Pearl Banks to the Ceylon Government, and is ably carrying on the work commenced in the Gulf of Manaar fifty years ago by our former Fellow, Dr. Kelaart.

Altogether, I think we may feel that the Linnean Society has played a not unimportant part in the investigation of the connection between parasites and pearl-formation; and that therefore, perhaps, it is not inappropriate that one of your Anniversary Addresses should have been devoted to that subject.

Mr. Henry GROVES moved:—That the President be thanked for his excellent Address, and that he be requested to allow it to be printed and circulated amongst the Fellows—which, after being seconded by Dr. Maxwell T. Masters, was put and carried unanimously.

† In the sixth edition of the 'Systema Naturae' (1746), p. 195, Linnaeus gives the following definition of a pearl:—"Calculus testae concharum. Margarita, Unio. Locus: Testa exccrescentia latere interiore, dum exterius latus perforatur"—which is certainly simple enough.
The ballots for Council and Officers having been closed at the times laid down in the Bye-Laws, the President appointed Mr. G. S. Saunders, Mr. Henry Groves, and the Rev. R. Ashington Bullen to be Scrutineers for both ballots; and the votes having been examined, the Scrutineers reported to the President, who thereupon declared the result as follows:

The new Councillors are denoted by a star prefixed; the five retiring Councillors being: Frank Crisp, LL.B., C. B. Clarke, F.R.S., Prof. J. B. Farmer, F.R.S., Dr. W. G. Ridewood, and D. Sharp, F.R.S.

The ballot for the Officers was declared as follows:

President: Prof. W. A. Herdman, F.R.S.

Treasurer: Horace W. Monckton, F.G.S.

Secretaries

\[\{ \text{Dr. D. H. Scott, M.A., F.R.S.} \]
\[\{ \text{Rev. T. R. R. Stebbing, M.A., F.R.S.} \]
\[\{ \text{B. Daydon Jackson.} \]

The President then addressing the Rev. Canon Norman, F.R.S., said:

"Canon Norman,—It gives me peculiar pleasure, on the present occasion, to be the mouthpiece of the Linnean Society. The Council has selected you this year as the recipient of the highest honour at their disposal—the award of the Linnean Medal. You will be gratified, I know, when you think of the list of distinguished botanists and zoologists who have preceded you as Medallists, and we are gratified at being able to add your honoured name to that illustrious list.

"In your presence I find it difficult to say all that I might as to those high claims to the distinction which the Council recognised in making the award; but it is customary to make such a statement, and I may therefore be permitted to remind those who hear me now, and those who read of this Meeting in our 'Proceedings' hereafter, that we honour in our Medallist a naturalist who has probably done more than any other man living to make known to Science the Invertebrate Fauna of the seas of North-West Europe."
His name occurs as the discoverer or the recorder of rare and interesting marine animals in nearly every faunistic text-book and monograph from 1852 onwards. For more than half-a-century Dr. Norman has been indefatigable in collecting and in elucidating the British species of Crustacea and other Invertebrata; and the many parts of the ‘Museum Normanianum’ form a record of a vast collection which has ever been at the service of scientific workers both at home and abroad. Bate and Westwood, in their work on ‘British Sessile-eyed Crustacea,’ make acknowledgments to the Rev. A. M. Norman, ‘who has forwarded to us his entire collection of Edriophthalmatous Crustacea for examination’—and that is only one of many similar instances. Haeckel, Bowerbank, H. B. Brady, G. S. Brady, Hincks, M’Intosh, Bonnier, Canu, Alder and Hancock, Haddon, Jeffrey Bell, Della Valle, P. Mayer, and Giesbrecht are some of the eminent marine zoologists who acknowledge in their publications the help freely given by our Medallist.

‘Norman’s own scientific writings are numerous, extending from 1851 to 1906; and his wide scope is indicated by the Shetland Dredging Report to the British Association in 1868, ‘On the Crustacea, Tunicata, Polyzoa, Echinodermata, Actinozoa, Hydrozoa, and Porifera.’ Bowerbank, at that date, naming a new genus of sponges Normania, says: ‘I have named this genus after my friend the Rev. Alfred Merle Norman, the ardent and accomplished naturalist, to whom I am indebted for numerous new and valuable species of British Sponges.’ This compliment Norman amply repaid in 1882 by completing Dr. Bowerbank’s unfinished work on the British Sponges for the Ray Society.

‘A genus Normania was named by G. S. Brady among the Ostracoda in 1866; and it may be noted that under the dates 1889 and 1896 Brady and Norman are found collaborating in an important monograph on the Ostracoda, published by the Royal Dublin Society. That in 1871 Axel Boeck named a genus of Amphipods Normania (now Normanion, Bonnier) is only one more evidence of our Medallist’s varied activity. I cannot refer to all his papers: they include useful faunistic lists from different parts of the country, records of dredging expeditions in the North Sea and elsewhere. In the Zoological Society’s ‘Transactions’ for 1886 will be found his joint paper with Mr. Stebbing on the Crustacea Isopoda of the ‘Lightning,’ ‘Porcupine,’ and ‘Valorous’ expeditions.

‘His definition of the ‘British Area in Marine Zoology,’ issued in 1890, has been generally accepted. At the same date he published a valuable ‘Revision of British Mollusca,’ worthy of a sometime President of the Conchological Society. His ‘Month on the Trondhjem Fiord’ in the ‘Annals and Magazine of Natural History’ for 1893 to 1895, followed more recently by his ‘Notes on the Natural History of East Finmark’ in the same Journal for 1902–05, could only have been written by a Field-Naturalist of
very extensive experience and knowledge. The vigour and acuteness of research displayed in the memoir on *Splanchnotrophus* by Hancock and Norman, read before this Society in 1862, are equally prominent in the volume by Norman and Scott on the Crustacea of Devon and Cornwall, published a few weeks ago.

"Besides his own meritorious studies in those branches of Natural History in which this Society has always taken an exceptional interest, Dr. Norman has even wider and more general claims on our gratitude and regard. He has ever been ready and eager to encourage beginners in Science. He has cultivated the friendliest intercourse with the eminent naturalists of other nations. His co-operation with French zoologists in the cruises of the 'Talisman' and the 'Travailleur' in the Gulf of Gascony, on the invitation of the French Government, is well known, and was highly appreciated by his fellow-workers. He has received from the 'Institut' of France the medal struck in honour of the expeditions. Thus he has been continually a referee open to appeal for information and advice, whether demanded of him by the humblest worker or the proudest Government.

"These, Dr. Norman, are some of the considerations that have influenced the Council in awarding to you this Linnean Medal, which they hope you will accept as an indication of their high appreciation of your services to Marine Zoology in general and to Cercinology in particular—services which we hope may be continued for years to come."

The recipient made a reply expressing his gratification at the award.

The General Secretary having laid before the meeting the Obituary Notices of Fellows, the meeting terminated.

OBITUARY NOTICES.

JOHN BIDGOOD died at Bournemouth on 6th October, 1905, from blood poisoning, in his fifty-third year, and was buried at Gateshead on the 16th October. At the time of his death he was head of the Secondary School at Gateshead-upon-Tyne. He was an enthusiastic botanist and geologist, and of late years he had given much attention to colour in flowers, especially in Orchids, on which he had written and lectured. He was elected Fellow, 6th March, 1889.

GEORGE BOWDLER BUCKTON (1818–1905).—Among other losses of last year, the Linnean Society has to record that of one of its oldest members, and one who served on its Council, 1855–56. On September 25th, 1905, at the ripe age of eighty-seven, George Bowdler Buckton, F.R.S., F.L.S., F.C.S., F.E.S., &c., passed away, "leaving behind him," to use the words of Sir William
Huggins, "the deep grief of a large circle of friends, and a noble example of unwearied devotion to the successful prosecution of scientific work, notwithstanding great physical infirmity."

Born in London, May 24th, 1818, and brought up at Oakfield, Highgate, G. B. Buckton was the eldest son of a large family, his father, George Buckton, being Proctor of the Prerogative Court of Canterbury, and his mother, Eliza, the daughter of Richard Merricks, Chichester, Deputy-Lieutenant of the County of Sussex.

About the age of five years, Buckton sustained an accident which crippled him for life, a misfortune which he always bore with courage and silence, but which a man of his strong build and active temperament must have felt acutely. Unfitted thus for public school and University life, he was educated by the Rev. Oliver Lodge, Rector of Barking, and the Rev. D. Meuse, formerly head-master of the Cholmondeley School, Highgate. Popular with his class-mates, he shared their escapades, and was often carried "pick-a-back" by some strong fellow on daring excursions.

Left a good deal to himself, he became a fair classical scholar, and read widely. He showed a marked taste for music and painting, which remained his favourite pleasures to the end of his life. He evinced also remarkable powers of inventive construction in illustrating his youthful lectures on scientific subjects.

While scarcely more than a boy he made the acquaintance of Thomas Bell, who lived at Hornsey, and became his close friend for more than forty years. Stimulated by Prof. Bell, he became an earnest student of natural history. With a pony he roamed the Highgate Woods and their neighbourhood, and made careful and very complete collections of bees, shells, butterflies, and birds; most of the latter he shot and prepared with his own hands. He became also a good fisherman, and visited the rivers of Scotland and of Ireland. Always keenly alive to the interest of allied issues, his enjoyment of works on astronomy led him, quite early, to grind telescopic specula. Frankland, with whom he afterwards became intimate, vied with him in being the first to produce specula on glass, which method had been lately invented by the French philosopher, Foucault. Subsequently he worked specula of 12 inches diameter, and, as an amateur, mounted these equatorially.

When, on the death of his father, he moved into London, he built a circular observatory on the leads of his house, and made and mounted more than one telescope. It was about this time that he became the pupil, friend, and assistant of Professor A. Hofmann at the Royal College of Chemistry. His first recorded scientific paper was "Observations on thedeparture of Diplasomine with Cyanogen," which was published by the Chemical Society, 1852, and translated into French and German periodicals. A succession of other papers followed, notably one on his discovery and isolation of the radical Mercuric Methyl (Royal Society's Proceedings, 1857). The last of the series, worked out with the collaboration of William Odling, was upon Aluminium Compounds.
and was published in the Royal Society’s ‘Proceedings,’ 1865. A list will be found in that Society’s Catalogue of Scientific Papers, which however omits his paper in the ‘Zoologist,’ xiv. 1854, pp. 436–438, on Cyanide of Potassium for killing insects.

It was on December 16th, 1845, that Buckton became a Fellow of the Linnean Society, coming into contact with Yarrell, Westwood, Wilson Saunders, Owen, Huxley, the Hookers, and other naturalists, and contributions from his pen are to be found in our Proceedings, Journals, and Transactions.

In 1852 he was made a Fellow of the Chemical Society; and in 1857 was elected to the Royal Society, becoming a member of the Philosophical Club of that Society, whose meetings he attended with great interest (in spite of the effort any journey entailed) till extreme old age compelled him to relinquish them. In 1883 he became a member of the Entomological Society; and later of the Entomological Society of France, and of the Academy of Natural Sciences, Philadelphia.

In 1865 Buckton married Mary Ann, the only sister of his friend Professor W. Odling of Oxford. He purchased the estate of Weycombe, Haslemere, Surrey, then a rural village, where he built himself a stone-gabled house, according to his own designs, taking with him his observatory and transit instruments. Here he lived for the remainder of his peaceful and happy married life. Of his eight children, five daughters and a son are still living.

From this time, though he kept his chemical laboratory and lathe-room and gave private lectures to his children and his friends, he devoted himself to Natural History, beginning with a study of the Parthenogenesis of Aphides, which resulted in four volumes on British Aphides for the Ray Society, 1876–1888, with profuse illustrations made under the camera lucida, which he lithographed on blocks of stone and coloured with his own hand. This was the first of his valuable series of Entomological monographs relating chiefly to the obscure and somewhat neglected suborder Homoptera. In 1890 he published his Monograph of British Cicadae, or Tettigidae (2 vols., Macmillan), in which he was helped by his children, who collected specimens and worked at the colouring of many of the plates. This was followed by the ‘Natural History of Eristalis tenax, or the Drone-fly’ (published by Macmillan, 1895), and finally by a large and important work on the Membracidæ of the World (Lovell Reeve & Co., 1901–1903), the Supplement to which, with many drawings, was finished for the Transactions of the Linnean Society only two months before the author’s death. The original plates of the Monograph have been presented to the Hope Museum, Oxford. His lightness of hand in setting his many hundred slides was remarkable. Often in laying out the delicate nervous organisation of an insect, he would take for the purpose the sting of a wasp, as the finest procurable tool.

Various societies and museums, abroad and in the colonies, were in communication with him, and he had a wide correspondence.
There was a dignity and unconscious charm even in his business letters that one associates with another generation, the simplest reply communicating the touch of a rare and genial personality.

Until they were nine and ten years of age Buckton taught his own children in various subjects, from grammar and languages to Euclid, drawing, and physiology. He had an unusual gift of exposition, and was ever ready to share his knowledge with others. His humility and simplicity made him one to be easily approached, and he gave often his tools and specimens to small boys who showed an interest in natural history. The story is still told of the stonemason who stopped him in his pony-carriage in the village street, to ask the cause of the colours in the rainbow. One writes: "None who ever met him could fail to be struck with his kindly courtesy, his intense vitality, his wide range of knowledge, and his unflagging interest in every topic affecting mankind." In spite of his physical disabilities he travelled in Italy, France, and elsewhere, ascended Vesuvius, saw the Commune in Paris, and climbed the barricades, his great will-power enabling him to surmount difficulties that would have daunted many.

The visits to the observatory, which was built in his garden some way from the house, were abandoned after a serious accident which befell him in the autumn of 1882, when he overbalanced himself in reaching the long focus of a Newtonian. He lay with a double-fractured leg for some hours before he was found; but his recovery, though slow, was complete.

In politics a Conservative, he interested himself in all sorts of public matters, acting as treasurer and chairman on various local bodies. He was a moderate Churchman with broad sympathies, and gave liberally to Church and schools. Among his large circle of friends he numbered many of eminence, among them Tyndall and Tennyson, of whom he saw a good deal. "Though sometimes swift and uncompromising in his judgments, and of a quick temper, he was w ithal of a significant self-control, especially as regards his physical difficulties. Those most intimately associated with him have no single remembrance of moodiness or murmuring. Rather is their recollection, when some unexpected hindrance presented itself, of a lightly sad, resigned, half-humorous reference to his disability, a reference not easily forgotten by those who heard it." One has said that the most striking thing about him was his "magnificent calm." He kept his powers to the last. The fine and picturesque bust exhibited of him by R. Hope-Pinker in the Academy of 1904, showed how little age had impaired his clear intellect and vigour. He was finishing some water-colour sketches of Norway within a few weeks of his death. The end was the natural end of old age. After three weeks' suffering and illness following a chill, conscious to the last, his spirit passed peacefully, on the night of September 25th, 1905, surrounded by his wife and his children.

"Truly a devoted, spiritual, knightly nature," writes the present
Lord Tennyson, "with a faith as clear as the height of the pure blue heaven. His views and my father's, upon life, death, and immortality, were very much alike. My father always used to say, 'My most passionate and earnest desire is to have a fuller and clearer knowledge of God.'"

There is scarcely a preface to any of his larger works where Buckton does not incidentally reveal his deep-lying interest and trust in "things unseen."

The urn with the ashes, after cremation, was buried, according to his wish, in Haslemere churchyard, in the presence of many friends and representatives of the various societies to which he belonged, the subdued festivity of the place, which was keeping its harvest home, adding to the calm and beauty of a somewhat unusual ceremony.

The death of Mr. Thomas Christy, which took place on 7th September, 1905, removes from us a very constant attendant at our meetings, and for many years a very frequent exhibitor. He was born of an old Quaker family on the 9th December, 1832, and was thus in his seventy-third year at the time of his decease. Early in his business career he went to China, and was there associated with Sir Thomas Hanbury, and whilst engaged in his produce and drug business he corresponded with Daniel Hanbury and other leading pharmacologists. Returning to London in the early sixties, he established himself as an importer and merchant in drugs, distinguishing himself by the introduction of Strophanthus and menthol. In addition to his special catalogues, he from time to time published a part of his 'New Commercial Plants and Drugs,' of which twelve parts appeared from 1878 to 1897. He was an enthusiastic believer in ensilage, and in 1897 issued a pamphlet on the system. For much of the scientific information contained in these publications he depended upon specialists whom he induced to work with him. Many of the plants thus introduced by him were cultivated in his garden, first at Sydenham, afterwards at Wallington. One of the last matters which engaged his attention was the so-called "grass-rubber" or "root-rubber," Landolphia Tholloni, from the Congo. His connection with this Society dated from 21st December, 1876, and he served on the Council from 1883 to 1886. He was buried at Wallington, Surrey, on 11th September last.

The death of the Rev. James Morrison Crombie removes from our roll one who bore his share in the work of the Society nearly a generation ago. He was born in Aberdeen, where he was baptised 20th April, 1830; on leaving school at the age of fifteen he entered at Marischal College, in the University of his native town, thence going up to Edinburgh, where he took his degree of M.A. Prof. Macgillivray, his first instructor in natural science, wrote of him: "He
has in all respects been one of the best students I have ever had under my charge, and will yet distinguish himself as a botanist." In a clerical capacity he was first licensee in Edinburgh in the Established Church of Scotland in 1858, and was ordained a minister of that communion in 1862. His first essay in natural history was his small volume, 'Braemar, its Topography and Natural History,' Aberdeen, 1861, 8vo. This was written during his probation at Castleton; later he was stationed at North Leith, before he came to London as assistant to Dr. John Cumming. He had a ministerial charge at Swallow Street, Piccadilly; and on its sale, served for many years as an acting-chaplain to the forces at Aldershot.

In spite of these claims upon his time he managed to engage in botanic work, especially devoting himself to lichenology, in which branch he published his first paper in the 'Journal of Botany' for 1869, in three parts, entitled "New British Lichens," many of which were described from his own collecting. He was at this time an indefatigable pedestrian, and would even pass the night among the heather, in order to get at plants he wanted; though most averse to trade collectors, with whom he sometimes had warm disputes in the wilder districts. In the next year he brought out a manual for British lichenologists, namely, 'Lichenes britannici, seu lichenum in Anglia, Scotia et Hibernia vigentium enumeratio,' Londini, 1870. From this time onward to 1893 Crombie published many papers on his favourite study, in which he ranged himself with Nylander, and against the symbiotic nature of the lichen. He described many novelties from the Arctic and Antarctic regions, and investigated de novo the lichens of Dillenius and of Withering. For the Trustees of the British Museum he undertook an enumeration of the British Lichens in the Department of Botany, of which the first volume came out in 1894 as 'A Monograph of the Lichens found in Britain,' &c., but the second volume was not completed in the author's lifetime. He was elected a Fellow of the Linnean Society, 6th May, 1868, and served on the Council from 1879 to 1882; in 1879 also he became Lecturer on Botany at St. Mary's Hospital Medical School till 1891. Shortly after his retirement from this lectureship he removed to Ewhurst, Surrey, and there quietly lived till his death on 12th May, 1906.

His herbarium is now at the British Museum (Natural History).

[B. D. J.]

The Right Hon. Sir Mountstuart Elphinstone Grant Duff, G.C.S.I., was the son of James Cunningham Grant Duff, the author of the 'History of the Mahrattas,' and Jane Catherine, the only child of Sir Whitelaw Ainslie, author of the 'Materia Medica of Hindostan,' published at Madras in 1813, and recast in two volumes, London, 1826. He was born at Eden, Aberdeen-shire, 21st February, 1829, received his education successively at
Edinburgh Academy, the Grange, Bishop Wearmouth, and Balliol College, Oxford, where he took a second class in 1850, and was called to the Bar in 1854, of the Inner Temple. He declared that "the chief interests of his life were politics and administration," of which abundance fell to his share. He represented the Elgin Bursghs in Parliament from 1857 to 1881, and held office as Under-Secretary of State for India, 1868–1874; Under-Secretary for the Colonies, 1880–81, which post he quitted to become Governor of Madras, which he held for five years to 1886. Connected as he was on both father's and mother's sides with India, this appointment was congenial. He had previously been Lord Rector of Aberdeen University, 1866–69, and after his return to England he was President of the Royal Geographical Society, 1889–93, of the Royal Historical Society, 1892–99, a Trustee of the British Museum from 1903, and a Member of the Senate of London University from 1891. Amongst these varied scenes he mingled with the best informed people, which furnished him with material for his fourteen volumes of 'Notes;' embracing a period of fifty years, from the time of his taking his degree to the First Council of King Edward VII. Besides three or four political works, he wrote three memoirs—of Sir Henry Maine (1892), Ernest Renan (1893), and an appreciative notice of the fourth Baron de Tabley, which was prefixed to that nobleman's posthumous 'Flora of Cheshire,' in 1899. He described his recreations as "fencing, botanising, travelling, conversation."

In 1859 he married Anna Julia, only daughter of Edward Webster, Ealing, by whom he had four sons and as many daughters. He was elected into our Society 18th April, 1872, and in 1881 also into the Royal Society. He died on 12th January, 1906.

[B. D. J.]

The Hon. Charles Arthur Ellis was born at Lisbon in December 1839. He was the third son of Lord Howard de Walden, the sixth Baron and a distinguished diplomatist who represented Great Britain as Minister in Lisbon and Brussels, at which places Charles passed the first years of his life. He received his education at Harrow, and after having graduated at Balliol College, Oxford, he qualified as a barrister of the Inner Temple. From an early age he showed great fondness for Natural History; without entering into a methodical study of the subject, he cultivated it by reading, collecting and keeping every kind of living animals for the purpose of observing their habits. Of sport he saw and enjoyed as much as a man can desire, but this home experience as a sportsman only served him as an apprenticeship for the travels and expeditions which he undertook in the desire to see wild nature in her grandest and purest aspects. In 1861–62 he paid his first visit to Canada and the United States under exceptionally favourable conditions. A friend of his father's, Admiral E. W. Vansittart, who com-
mended at the time the 'Ariadne' which escorted H.R.H. the Prince of Wales on his visit to America, invited Ellis to be his guest on the occasion. During the progress of the Prince's visit, Ellis remained attached to the retinue, seeing in a short time more of the country than would have been possible to him, if he had travelled by himself, and preparing himself for other visits which he made in subsequent years and which he extended into many parts of the Far West. The object of these later visits was mainly sport with rod and gun, and several seasons were devoted to the big game of the Rocky Mountains; he travelled southwards into Mexico and British Guiana, attempting even the ascent of Roraima, a feat accomplished many years later by Im Thurn.

The accounts of the wonderful success of sportsmen in South Africa induced him to undertake an expedition into that continent. Having secured the goodwill and assistance of a professional hunter, John Dunn, who enjoyed the special favour of the Zulu King, he was able to penetrate into, and shoot in parts of the country which were closed to the majority of travellers, and, therefore, still teeming with every variety of big game. On this expedition he met with a serious accident, as far as his friends know, the only one that befell him during his wanderings. A crocodile seized him by the leg inflicting dangerous wounds, by which he was kept for six weeks a close prisoner in a Kaffir kraal.

On the invitation of Lord Dufferin, then Governor-General and Viceroy of Canada, he fished in 1879 the Grand Cascapedia River, Bay of Chaleur, in the Province of Quebec, having for his companions Mr. L. Iveson and Captain G. A. Percy. An idea of the abundance of fish in that river at that time may be gathered from the record kept by Ellis of that expedition. Between June 19th and August 14th he fished on 44 days, during which he caught to his own rod 269 salmon of an aggregate weight of 6714 pounds; 53 weighed between 30 and 44 pounds.

In 1882 it visited India and organized an expedition into Eastern Turkestan; travelling by the usual route through Cashmere and Leh, and spending the winter in Yarkand and Kashgar. During this expedition he had an opportunity of releasing a Punjabi trader from an embarrassing situation; and from a sense of gratitude, this man not only kept up a correspondence with Ellis after his return to England, but also sent him a series of some thirty heads of Ovis poli, such as is not likely to be ever brought together again. On his journey home Ellis visited Japan, some of the South Sea Islands, and New Zealand, without making a protracted stay in any of these countries.

After his return to England he gradually laid aside gun and rod, and finally selected Surrey for his residence. In the charming neighbourhood of Haslemere he built Frensham Hall, a
 commodious house, in which he could find room for the numerous trophies, and other objects of interest which he had collected during his wanderings, and to which many reminiscences of his life were attached. It was among them that his friends had an opportunity of learning something of his experiences in foreign countries. Pictures, chiefly of Mammals, Birds, and Fishes—among them many originals by Joseph Wolf—adorned the walls. The surroundings of the house, which is situated on the top of a ridge, the well-wooded slope and the plantations of the valley were devoted to the cultivation of an immense variety of hardy plants; a collection of ligneous plants was an object of his special care and attention. Ellis did not care about plants or animals which would have to be kept under artificial conditions or in confinement. But in the well-watered low-lying part of his grounds he had constructed a series of ponds for the acclimatization of such species of Fishes, Frogs, and Tortoises as might be expected to thrive in our climate. The continent of Europe and North America supplied most of the species of the Frensham Colony; he obtained large consignments of Bull-frogs, Tree-frogs, Freshwater Turtles, and for the last five years he had the pleasure of seeing the majority sufficiently well established and regularly breeding in his ponds. The progress of the growth of his plantations and the observation of the habits of his aquatic animals were a never-failing source of delight to him, and the correspondence with his friends teems with valuable hints and interesting facts.

He joined the Society on 15th February, 1897, and was one of the generous donors enabling the Society to acquire the Swainson correspondence. He was not married, and died on the 30th March, 1906.

Frederick John Horniman died on the 5th March, 1906, at Falmouth House, Hyde Park Terrace, London, in his 71st year. He was a native of Bridgewater, Somerset, where he was born on the 8th October, 1835, and was educated at the Friends' College, Croydon. He entered into business as partner in the well-known firm of W. H. & F. J. Horniman, which afterwards was made into a company. Throughout his life he collected largely and travelled widely, visiting North America, China and Japan, Ceylon, Burma, and British India.

His collections were gathered into a Museum, which in 1901 was presented by him to the London County Council in trust as a public museum; the gift was stated to have cost the donor £40,000. He sat for the boroughs of Penryn and Falmouth as a Liberal from 1895 till the recent dissolution, when failing strength determined his retirement. He was elected a Fellow of this Society 2nd March, 1896, and belonged also to the Royal Geographical, Zoological, and other societies. He was twice married, and left an only son, who was returned to Parliament for Chelsea last January, thus preserving the connection of his family with the House of Commons.
Rudolph Albert von Koelliker was born at Zürich in Switzerland on the 6th of July, 1817. Before his death, on the 2nd of November, 1905, he had become Geheimrat Prof. Dr. Rudolph Albert von Koelliker. His long life was filled with science. But just as a caisson may be filled with cannon balls and yet have room for bullets and shot, so Koelliker found means to dovetail in with intellectual pursuits many other activities. His ambition did not need to spurn delights, while he was living laborious days. From boyhood to old age he rejoiced in every sort of athletic exercise. His agreeable "Reminiscences," published in 1899, diversify the details of anatomical research with glimpses of his exploits and powers of endurance in skating, swimming, riding, mountaineering, and chamois hunting. He attributes in part his vigorous health to this constant indulgence in outdoor pursuits. It is just possible, however, that the vigorous health made the indulgence possible, rather than resulted from it. On one of his early voyages he was able to resist a strong temptation to be sea-sick, and celebrates this as a victory of mind over matter. On a subsequent occasion the tumbling waves were too much even for his resolution. He does not in this case point any moral as to the victory of matter over mind, but it is creditable to his fairness that he reports the circumstance. His candour is manifested at several points. For example, in 1845, as our Proceedings show, he adopted the current opinion, and argued against Costa that the hectocotylus-arm of the Octopoda was an independent organism. Fifty-four years later he calls this mistake to mind. Be the excuses what they might, he can scarcely forgive himself for it, and speaks of it as a still gnawing worm. In the course of his career he had so many successes and received so many distinctions, that a few errors and disappointments help to humanise the picture. At the age of twenty-seven he became a professor in his native town, and would fain have remained there. But the home authorities were insufficiently awake to the claims of his budding renown, so that at thirty he reluctantly accepted an invitation to Würzburg, with the result that its university profited for more than half a century by his valuable and steadfastly loyal service.

It is pleasant to reflect that at every stage of his public life the genius of Koelliker met with appreciation in Great Britain. So early as 1853 his 'Manual of Human Histology' was translated into English by Busk and Huxley. He was elected a Foreign Member of the Linnean Society in 1858, and was awarded the Linnean medal in 1902. Our Proceedings for the latter year contain the eloquent eulogy passed upon him by Professor Vines, then president. From the Royal Society he received the Copley medal in 1897. He had been one of its Foreign Members since 1860, and delivered the Croonian lecture before it in 1862. In 1889 he took part in the 'Challenger' reports, contributing a Monograph on the Pennatulidae, and utilising the opportunity to introduce a new classification of that group.
Koelliker's visits to our Island were frequent, and from the outset, while he was quite a young professor, he was received with a distinguished welcome. This was in great measure due to the Pacinian corpuscles. Koelliker, it should be explained, after having been a favourite pupil of Henle, began his official life as prosector to that eminent anatomist at Zürich. In this employment he happened one day to be examining the intestine of a cat for lymphatic vessels, when his attention was caught by some peculiar bodies with a pearly lustre. These he showed to Henle, who examined them with him under the microscope, and said at once that such bodies were described in a work he had just received from the Italian anatomist Pacini. The professor and his prosector then in amicable concert examined these organs in man and a series of other animals, and gave the first exact description of them, after discovering in them the nerves which Pacini had not seen, a success which is described as easy in the case of the cat, but more difficult in the human subject. Their joint treatise appeared in 1844. In the following year Koelliker, now himself a professor, journeyed to London. He sums up his stay there as "very interesting, often pleasant, but on the whole very fatiguing." The fact was that he compressed into a few weeks the sight-seeing and experiences which perhaps not many Londoners compass in a lifetime. He was taken about not only to museums, but to docks, exchanges, warehouses, bazaars, galleries, gardens, and country-houses. It rained invitations to the breakfasts, which were in that day fashionable, and to dinners which at that epoch lasted, he says, from six o'clock to eleven! With these engagements were intermingled soirées scientific and social, dances at Almack's and elsewhere, and a presentation at Court. Amid this whirl of amusement he carried out the principal object of his journey, which was to have intercourse with all our most prominent men of science. They gave him a ready and genial reception, even the jealous reserve of Owen being in this instance overcome. In colloquies on matters of professional interest and in demonstrations with the microscope, it is clear that the visitor and his hosts found reciprocal and appreciative satisfaction.

On Koelliker's services as one of the chief pioneers in the modern development of microscopical and microtomical investigation, as an ingenious, active, and inspiring teacher, as a luminous writer on histology and many other branches of comparative anatomy, it is unnecessary to enlarge. It may be of interest here to give, as nearly as may be in his own words, the summary of his views on the doctrine of descent. He insists that the process of inheritance can only be understood through the phenomena of generation. The generating organisms transmit to the generated a morphologically definite substance of typical composition, on whose operations the whole conformation of the generated offspring depends. This heritable matter (Nägeli's idioplasma) is contained in the germinal vesicles of eggs and in
the sperm-threads, both of which are equivalent to nuclei, and
probably are characterized chemically by the so-called Nuclein.
By the conjugation of one of these male and one of these female
nuclear structures arises the first nucleus of the new creature,
which is therefore to be regarded as a hermaphrodite formation,
and appears as carrier of male and female characters. From this
first embryonic nucleus all nuclei of the perfected creature are
derived in uninterrupted succession, and these therefore are
likewise representatives of both the generating organisms.
Through special operations of their minutest constituent particles,
the nuclei condition first the phenomena of multiplication of
the cells, and secondly their growth in volume and quality.
Typical conformations of particular organs and complete organisms
are the result of definite combinations of cell-divisions and pro-
cesses of cell-growth, and therefore the nuclei, by means of their
typical forces derived from the generative elements, dominate the
whole constituent process of the organisms, or, in one word, the
inheritance.

In agreement with his friend Nägeli's views as to the vegetable
kingdom, Koelliker believed in a polyphyletic origin for the
animal kingdom. He did not accept Ontogeny as any guide to a
general Phylogeny, arguing that the stages of development in one
group of creatures might recapitulate the genealogical history of
that group, without in any way proving its relationship to other
groups. He courteously but emphatically explains his attitude
of opposition to Darwin, Haeckel, and Weismann. To the
manifolding of organisms through the natural selection of favour-
able variations, he opposes his own idea that "the origin of the
whole organized world is to be accounted for by a great plan of
evolution continually driving on the simpler forms to more and
more diversified developments." There is something unsatisfying
in a doctrine which seems to say that the world has been evolved
by a plan of evolution which evolves it. But naturally the acute
professor has much to say to make his opinion wear an air of
plausibility. For those who advocate a whole forest of genea-
logical trees in place of one grand many-branching stem, there is
at least this to be said. Any complete and self-consistent theory
of evolution must surely have its basis, not in spontaneous
generation, but in some orderly transition from the inorganic to
the organic. That the requisite conditions for this should have
occurred only at one point of time and one point of space, and
have produced only one or two organisms, is not on the whole
very probable. Nature works with so much affluence that very
rarely does any known thing prove in the end to be really rare.
When the undiscoverable is discovered, one expects soon to hear
that the new rarity is in fact freely disseminated through the
universe. It is quite conceivable that in past ages countless
specimens of the simplest organic type were produced and that
they are still being produced, but none the less all chance of
favourably starting independent phylogenies may have come to an end at a very early period through the domineering capacity of some masterful race. On these questions the open mind is still as ever desirable. Indefatigable, minute investigation of facts, by men like Koelliker, can never be dispensed with.

[T. R. R. S.]

Sir Robert Lloyd Patterson, Knight Bachelor, Deputy Lieutenant, Justice of the Peace, and Fellow of the Society since 17th April, 1874, was the son of Robert Patterson, F.R.S., the zoologist, and was born at Belfast on 28th December, 1836. He went to school at the Royal Academical Institution, Belfast, and afterwards spent some time at Stuttgart. Returning to Belfast, he joined in business with Richardson Brothers, in the staple trade of flax, yarn, and linen; in 1858 he set up on his own account, and a prosperous career resulted till his retirement in 1886. His work in connection with the Chamber of Commerce was from 1864 onward; he was twice its President, in 1880 and 1895, and was Honorary Treasurer at the time of his death; he was knighted in August 1902.

His recreations were in natural history; his favourite cruising ground was Belfast Lough, and he was constantly scanning its fauna: in 1880 he published a volume on ‘The Birds, Fishes, and Cetacea of Belfast Lough,’ which ran into a second edition. He was a constant contributor to the ‘Irish Naturalist,’ ‘The Field,’ and Nature Notes published weekly in the ‘Northern Whig.’ He had a fine collection of Irish birds, and gave many specimens to the Patterson Museum, established at the People’s Palace. An active supporter of the Belfast Natural History and Philosophical Society, he twice filled the chair, in 1881 and 1894. The ‘Northern Whig’ summarised his life thus in a leading article:—“The death of Sir Robert Lloyd Patterson, although not unexpected by his relatives and by those who knew his recent condition of health, will come with something of a shock to the public, long accustomed to his active and vigorous presence in their midst. Sir Robert represented a type now less often seen—the shrewd and active business man, who also finds leisure thoroughly to cultivate some branch of science or literature and to make a name for himself in connection with it.” [B. D. J.]

William Phillips was born at Presteign in Radnorshire in May 1822, migrated to Shrewsbury at the age of ten, and there breathed his last, on 22nd October, 1905, in his 84th year. It was not till about 1861 that he took up the study of Botany, at first in a general sense, afterwards concentrating his attention on Fungi. He was a neighbour of the Rev. W. A. Leighton, author of the well-known ‘Flora of Shrewsbury,’ and ‘The Lichen-flora of Great Britain,’ 1871, etc. Mr. Phillips drew up a list of flowering plants and ferns of the neighbourhood, for
Pigeon's 'Handbook of Shrewsbury,' and he was connected with the Caradoc Field Club, as botanic referee from 1873 up to the time of his death, when he was Vice-President.

He prepared and issued four fasciculi of 'Elvellacei britannici,' from 1874 to 1881. His contributions published in our issues were:—"On a new species of Helvella (H. californica, Phillips)," Transactions, ser. II. Bot. i. (1880) p. 423, pl. 48; "A Revision of the Genus Vibrissea," ib. ii. (1881) pp. 1-10, pls. 1, 2; and "Some Observations on the 'Breaking' of the Shropshire Meres," which came out in our Proceedings, 1881-82, p. 29. This last was amplified in an account issued in the seventh volume of the 'Transactions' of the Shropshire Archæological Society in 1884; and the subject was again taken up, read before the Caradoc Field Club, and published in 'The Midland Naturalist,' with two coloured plates, in 1893. His most extensive work, and only volume, was 'A Manual of British Discomycetes' in the International Science Series in 1887; other papers were contributed to the local societies named, and with Dr. Plowright he drew up two papers on "New and Rare British Fungi," which appeared in 'Grevillea' in 1873-74. Always fond of antiquarian research, latterly he gave nearly the whole of his leisure to that study, but preserved his interest in botany to the last. A short time before his death, his health failed somewhat; an attack of heart-trouble had apparently yielded to medical treatment, but in the same night he passed quietly away during sleep. He was buried amidst tokens of universal mourning on the part of friends and fellow-citizens.

Quiet and unassuming, he did an immense amount of work, not only in botany and archaeology, but in more purely local requirements, as at the Museum, on the public documents, and similar work, at the same time shunning publicity. His connection with the Linnean Society began 3rd June, 1875, and he was also a Fellow of the Society of Antiquaries.

The genus of Fungi Phillipsia was established in our Journal in 1881, by the Rev. M. J. Berkeley, in honour of our deceased Fellow.

[B. D. J.]

Richard Rimmer, who died at his residence, Dalawoodie, Dumfries, on 19th August, 1906, was a keen all-round naturalist, but he paid special attention to the Mollusca of Britain. He was elected Fellow of our Society on 1st May, 1879, and in the following year he brought out a small volume on his favourite subject, entitled 'The Land and Fresh-water Shells of the British Islands,' London, 1880, Svo., of more than 200 pages and a dozen plates, some of which were produced by photography, one of the earliest applications of that art to malacologic illustration. In 1887 he removed from Westbourne Crescent, Hyde Park, to St. Albans, and after two years in that town he migrated to Dumfries, where he ended his days, at the age of 79. [B. D. J.]
Mrs. Percy Sladen, 1848–1906.—Constance Anderson, daughter of the late William Charles Anderson, M.R.C.S., J.P., sometime Sheriff of York, was born in that city on the 11th of August, 1848. The noble minster of her native place may be credited with having kindled in her an enthusiasm for architecture and antiquarian lore. One of her brothers, Dr. Tempest Anderson, M.D., D.Sc., F.L.S., has informed us that in the outset of life her taste was cultivated at the York School of Art and in Rome. Among the results of the proficiency thus attained are spirited accounts of some important English churches, which she published at the prompting and under the editorship of Professor Bonney, F.R.S., in 1884 and 1890. One of these essays describes the grand cathedral with which from childhood she had been familiar. The others are concerned with the less renowned but archaeologically and otherwise very interesting parish churches of Louth, Halifax, and Bradford, and the Abbey church of Selby. In regard to the last of these, the authoress remarks that "to give any idea of the beauty of the interior, words utterly fail," and then proceeds, with perhaps designed inconsistency, by her own skilfully worded sketch to evoke a very pleasing conception of its numerous charms. Upon wedding Mr. Percy Sladen in 1890 she readily allowed her lively intelligence to be directed to a new sphere of interest. For five years after his marriage Sladen continued to be, as he had been for five years before it, Zoological Secretary of this Society. The President in his address has explained how the sympathy between genial husband and genial wife led eventually to the foundation of the Percy-Sladen Trust, a boon to science great in promise and already not insignificant in performance. Before this came about there had to be intervening days of sunshine and days of sorrow. In 1898 the husband inherited a large fortune. In 1900 the wife became a widow. Thus it fell to her lot to carry out his wishes, and to show in only too brief opportunity that she knew how to make no ignoble use of riches. In the tribute of this memorial notice she herself enjoys a sorrowful primacy, won by what in the language of human ignorance we call her untimely death on the 17th of January, 1906. In the ranks of women who have been expressly honoured by the Linnean Society, the past yields two conspicuous examples—Lady Smith, who survived her husband, our Founder, for nearly fifty-six years, and Queen Victoria, who was for a still longer period our gracious patron. But neither of these remarkable persons was eligible for the ordinary Fellowship, to which Mrs. Percy Sladen was admitted, with a bevy of other ladies, on the memorable 19th of January, 1905, when the tardy recognition of women's aptitude for biological research received its inaugural blessing so far as this great house of science was able to bestow it.

[T. R. R. S.]

William Sowerby, who died on 9th March, 1906, at his residence at Baker's End, Ware, Herts, aged 79, came of a family well known in the records of natural history in this country. His

The subject of our notice, the son of James De Carle Sowerby, was born in 1827. About the year 1844 he became assistant to his father, the first Secretary to the Royal Botanic Society, Regent's Park, whom he ultimately succeeded about 1869. In 1880 he noticed the presence of a freshwater Medusa in the tank in which the great water-lily Victoria regia was cultivated in the Gardens under his charge, and the singular occurrence in fresh-water was investigated independently by the late Prof. Allman, at that time our President, and Prof. E. Ray Lankester. The President described the animal as Limnocodium Victoria in our 'Journal,' Zoology (xv. pp. 131-137), while Prof. Lankester suggested that L. Sowerbi would appropriately commemorate the discoverer. In 1895 Mr. Sowerby resigned his post, and was succeeded by his son, Mr. J. B. Sowerby, the present Secretary. He was elected Fellow, 7th March, 1872.

Frederick Townsend, who died at Cimiez, Alpes-Maritimes, on 16th December, 1905, at the age of 83, was elected comparatively recently into the Linnean Society, on 18th April, 1878. He was born at Rawmarsh Rectory, Yorkshire, on 5th December, 1822, was educated at Harrow, and Trinity College, Cambridge, graduating B.A. in 1850, and proceeding M.A. in 1855. It was whilst he was in residence at Cambridge that he became acquainted with C. C. Babington and W. W. Newbould, whose critical views on British botany were congenial with his own. With them he botanised round Cambridge, and his first paper, on Glyceria pedicellata, was published in the 'Annals and Magazine of Natural History' in 1850; from this time onward he was constantly publishing notes of his observations, as may be seen overleaf, and in 'The Journal of Botany' for April 1906, which also contains an admirable photogravure of our late Fellow. In our 'Journal,' Botany, xviii. (1881) pp. 398-405, pl. 15, he gave an account of his discovery of Erythrea capitata. His most considerable undertaking was his 'Flora of Hampshire,' 1883, the result of many years' work, and he lived to revise it and issue a second edition in 1904.

Soon after his marriage in 1863, Townsend settled at Shedfield Lodge, Wickham, South Hants, and there he began his work on the county flora, which practically ended only with his life. In 1874 he succeeded to the family seat of Honington Hall, Shipston-on-Stour, Warwickshire, on the border of Gloucestershire. Here he lived as an ideal country squire, and represented the Stratford-on-Avon division in the House of Commons, from 1886 to 1892, when he retired.
The genus *Euphrasia* was his special study during the last few years of his life, and he described one form as *E. canadensis* which he gathered at Quebec, and figured in the 'Journal of Botany' for January 1898.

He was a Member of the Botanical Society of Edinburgh so far back as 1846, and also of the Société botanique de France from 1872, to whose 'Bulletin' in 1878 he contributed a note on a *Veronica*. He was an accomplished draughtsman, and excelled in certain field sports, but was extremely modest and free from the slightest suspicion of ostentation. From his residence being far removed from London, he was not a frequent attendant at our Meetings, but almost every few months he was accustomed to work in our Library, and paid constant visits to the Department of Botany, British Museum.

BIBLIOGRAPHY.

On some points relating to the Morphology of *Carex* and other Monocotyledons. *Ib.* xi. (1873) pp. 102–166.

Flora of Hampshire, including the Isle of Wight; or, a List of the Flowering Plants and Ferns found in the County of Southampton, with localities of the less common species. London (Lovell Reeve & Co.) 1883. 8vo, pp. xxiv, 524, 2 pls., map (1 page additional corrections).

[The special groups, Rubi, Roses, and Cryptogams, forming pages 69-87, were contributed by specialists.]

Arabis ciliata, R. Br. [collected in South Kerry]. Ib. pp. 278-279.

[B. D. J.]

WELDON, Prof. W. F. R.; see page 109.

June 7th, 1906.

Prof. W. A. HERDMAN, F.R.S., President, in the Chair.

The Minutes of the Anniversary Meeting of the 24th May were read and confirmed.

Rev. James Lamont was admitted a Fellow.

Mr. Morley Thomas Dawe, Dr. Arthur Thomas Masterman, and Mr. James Anthony Weale were proposed as Fellows.

Dr. Robert Brown (of Glasgow), Mr. Henry Robert Knipe, Mr. Henry John Waddington, and Miss Evelyn Janie Welsford were severally elected Fellows.

The President announced that he had nominated the following as Vice-Presidents for the ensuing year:—Rev. Canon Fowler, Mr. Horace W. Monckton, Lt.-Col. Prain, and Dr. A. Smith Woodward.

The General Secretary exhibited a small oil-painting on panel of Linnaeus, after Pache (sight measure 9 3/4 x 7 3/4 in.), the property of Mr. Blackwell, which he had acquired as a portrait of Jean Jacques Rosseau (the Linnae having been taken for periwinkle). He had detected the error by the close correspondence of a print engraved by C. E. Wagstaff, and published by Charles Knight for the Society for the Diffusion of Useful Knowledge. This print LINN. SOC. PROCEEDINGS.—SESSION 1905-1906.
purported to be engraved from a portrait in the possession of Robert Brown, but it displayed a curtailment of the figure and accessories from the picture by L. Pasch which Robert Brown gave to this Society in 1853 on his quitting the Chair, the history of which is well known (Proceedings, 1888–90, pp. 24–25). The question was raised, could this cabinet picture have been also in the possession of Robert Brown?

In the discussion which followed, Mr. Carruthers stated that Robert Brown left all his property to his successor, J. J. Bennett, his own predecessor at the British Museum, and he was certain that if the portrait now shown had belonged to Brown, Bennett would have carefully kept it, and ensured its conservation. Mr. Hopkinson, Dr. G. H. Fowler, Rev. T. R. R. Stebbing, Sec.L.S., Rev. Canon Smith, who pointed out that by a still legible label the frame must have been made not later than 1837, and Mr. Henry Groves also spoke.

The President exhibited tubes showing stages in the metamorphosis of a young flat-fish (*Pleuronectes platessa*), the plaice, leading from the symmetrical larva to the asymmetrical young flat-fish. These fish were hatched and reared in the Port Erin Biological Station. He further mentioned the operations conducted this year in hatching and liberating some millions of young plaice.

The following papers were read and discussed:—

1. "On two new Species of *Populus* from Darjeeling," By H. H. Haines, F.L.S.
2. "Biscayan Plankton.—Part VIII. The Cephalopoda." By W. E. Hoyle. (Communicated by Dr. G. H. Fowler, F.L.S.)
3. "Biscayan Plankton.—Part IX. The Medusae." By E. T. Browne. (Communicated by Dr. G. H. Fowler, F.L.S.)

June 21st, 1906.

Dr. A. Smith Woodward, F.R.S., Vice-President, in the Chair.

The Minutes of the General Meeting of the 7th June were read and confirmed.

Miss Lilian Suzette Gibbs, Miss Evelyn Janie Welsford, Mr. William Denison Roebeck, and Mr. Henry John Waddington were admitted Fellows.

Mr. Henry Edward Houghton and Mr. Thomas Fox were severally elected Fellows.
Mr. W. Saville Kent, F.L.S., exhibited transparencies and lantern-slides in a three-colour process of photographs of Fish and associated Fauna of the Polynesian Coral-reefs.

The Vice-President in the Chair, Rev. T. R. R. Stebbing, and Mr. W. Carruthers contributed to the discussion which followed, and were replied to by the exhibitor.

Prof. F. E. Weiss, F.L.S., showed a section and an enlarged drawing of a section of the root-tip of *Lyginodendron oldhamium*, a fossil Cyendoflīx from the Lower Coal-Measures, displaying an extraordinary preservation of the young tissues.

The Chairman having invited discussion, Dr. D. H. Scott and Mr. Carruthers spoke on the highly interesting character of the section shown.

Mr. H. J. Waddington, F.L.S., placed on the table some cases of prepared Crustacea, in series from the youngest to the fully adult state. The Rev. T. R. R. Stebbing and Prof. C. Stewart referred to the remarkable excellence of the preparations; and Mr. Waddington, in acknowledging the vote of thanks, stated that most of the credit was due to his wife, who was his most effectual helper.

The following papers were read and discussed:

1. "Botany of Southern Rhodesia." By Lilian Susette Gibbs, F.L.S.

ABSTRACTS.

I.

By B. Daydon Jackson, Gen. Sec. L.S.

[Read 15th February, 1906.]

At the General Meeting held on the 7th December, 1905, Mr. W. T. Hindmarsh, F.L.S., sent photographs of a plant of *Shortia uniflora* in cultivation in his garden at Alnwick. In the discussion which followed, enquiry was raised as to the number of species contained in the genus, and the present short paper is an attempt to answer the question then put.

The original species, *S. galaeifolia*, was collected in Carolina by Michaux, in fruit, and described by Asa Gray from the single specimen at Paris, in 1839; the plant was not again found till nearly a century after the first discovery, and then in McDowell County, in South-west Virginia. The original station has since been found again by referring to Michaux's manuscript journal, as recounted in the 'Botanical Magazine,' t. 7082.

The second species, *S. uniflora*, was at first placed under the closely allied genus *Schizocodon*, it was found in the province of Shinano, Nippon; and a third, *S. sinensis*, is recorded from Mengtze, Yunnan.

Investigation of the material contained in the national herbaria of Kew and the British Museum, seems to point out that there are three good species of *Shortia* (noted above); one doubtful one, *S. rotundifolia*, described by Maximowicz as *Schizocodon*, but the corolla not seen by him; and *Shortia thibetica*, more appropriately placed as a monotypic genus.

The distinctions between the allied genera, *Shortia*, *Schizocodon*, and *Berneuxia* are not very strongly marked in every case, but the following lists may be of some use.

thibetica, Deene. l. c.—Mupin.

ilicifolius, Maxim. in Bull. Acad. Pétersb. xii. (1868) 71.—Japon.

soldanelloides, Sieb. & Zucc. l. c.—Japon.

Davidii, Franch. in Nouv. Arch. Mus. Par. sér. II. x. (1887) t. 13 n = Berneuxia thibetica, Decne.

galacifolia, Torr. & Gray, l. c.—Am. bor. rotundifolia, Makino, in Tokyo, Bot. Mag. ix. (1895) 327; et x. (1896) 221 = Schizocodon rotundifolius, Maxim.
sinensis, Hemsl. in Hook. Ic. Pl. t. 2624.—Yunnan.

thibetica, Franch. in Nouv. Arch. Mus. Par. sér. II. x. (1887) 54, t. 13 n (Davidii) = Berneuxia thibetica, Decne.

uniflora, Maxim. in Bull. Acad. Petersh. xvi. (1871) 225.

—Japon.

II.

The Origin of Gymnosperms.

By Prof. F. W. Oliver, F.R.S., F.L.S.

[Read 15th March, 1906.]

The investigations of Hofmeister have been regarded as settling once for all the general relation of affinity between the Gymnosperms and Vascular Cryptogams. Critical analysis of this work and later contributions in the same field have led to the recognition of several distinct lines of descent within the latter class, and at one time and another each of these lines has been favoured as that from which the Gymnosperms arose. In recent times, the balance of opinion has set in the direction of the Ferns, the point of closest contact being found in the Cycads. The view has gained material support through the discovery of multiciliate spermatozoids in the last-named group and in Ginkgo, as well as from the recognition of the existence in Palaeozoic times of an extensive plexus of forms (the Cycadoflées) which, whilst retaining the habit and many of the structural peculiarities of Ferns, show a distinct advance in the direction of the Cycads. Now that evidence has come to light proving that many of the forms there included were seed-bearing plants, the foundation of a new Class, the Pteridospertmeæ, has been judged expedient for these Spermophytes which have so much in common with the Ferns.

As matters are shaping at the present time, it would appear that certainly a preponderating number of so-called Palæozoic "Ferns" are in reality Pteridosperms which have been hitherto confounded with true Ferns in view of their frond-like habit and lack of distinguishing organs of reproduction. The existence of a great reserve of supposed Ferns in the older rocks has served as a material bulwark to the Hofmeisterian doctrine of the passage of Pteridophytes into Spermophytes. But if the Palæozoic is in reality the "age of Pteridosperms" rather than the "age of
Vascular Cryptogams," the position becomes altered, and the question is one that should engage the attention of Botanists. When it is borne in mind that, so far as the geological record goes, seed-bearing plants (Cordaitæ) are of at least equal age with true Ferns, the perplexities of the situation become manifest.

Another question upon which an expression of opinion would be valuable, is whether the whole group of Gymnosperms may be regarded as having been evolved along the Fern-Cycad line, or whether, on the other hand, some of them at least may have had a quite distinct origin.

Palæobotanical work has shown that in the Lycopod phylum seed-like structures were occasionally produced, and this discovery no doubt seems to strengthen what has always been a possibility, viz., that a portion of the Gymnosperms may have had its origin along this line.

III.

On the Earlier Geological Record of the True Ferns.
By E. A. Newell Arber, M.A., F.L.S., F.G.S.
[Read 15th March, 1906.]

It is evident that the Palæozoic Pteridospersms exhibit, both in their habit and anatomy, marked characters in common with the true Ferns, and it is therefore regarded as more than probable that they sprang from a Fern-like stock. Thus the Fern line of descent must be geologically older than the Pteridospersms. Yet the recent discoveries as to the nature of the male and female fructifications of these Fern-like, seed-bearing plants have tended in part to obliterate, and in part to cast strong suspicion upon, much that was formerly regarded as undeniable evidence of the existence of the true Ferns in the Palæozoic Period.

There is, however, every reason to believe that true Ferns did exist in Carboniferous and Permian times. The Botryopteridæ, and certain unassigned fronds bearing annulate sporangia were among the chief representatives. But it is doubtful whether the Palæozoic Ferns were clearly and generally differentiated into Eusporangiatae and Leptosporangiatae. In the fossil state we have naturally no evidence as to the development of the sporangia, and further, the biseriate or multiseriate annulus of Palæozoic sporangia does not agree with that of modern Leptosporangiatae. It would thus seem better to regard the Palæozoic Ferns as a separate class, from which both the Leptosporangiatae and Eusporangiatae were eventually derived. The name Primofilices is suggested to denote this race; since the preferable terms, Archæopteridæ and Palæopteridæ, are not available. The
Botryopteridæ constitute one family of the Primofilices, and others will probably be distinguished in the near future.

The origin of the Leptosporangiatae from the Primofilices is clear. This group began to differentiate at the close of the Palæozoic period. Possibly some of the Sphenopterid fronds of the Carboniferous and Permian rocks, bearing annulate sporangia, were the earliest offshoots in this direction. In the true Mesozoic floras (Rhaetic, Jurassic, and Wealden) the various families became marked out, and there is abundant evidence that the Leptosporangiatae then formed one of the dominant or ruling types of Mesozoic vegetation.

On the other hand, the question may well be asked, Is there any trustworthy evidence of the existence of the Eusporangiatae in either the Palæozoic or truly Mesozoic floras? In neither is there any evidence at all of the Ophioglossaceæ, and the only instance of possible Mesozoic Marattiaceous fronds with which I am acquainted are three in number, and all of Rhaetic age. In two species of Terniopteris (including the typical Rhaetic species T. Münterii) sporangia, resembling those of the modern Marattia, have been found on certain fronds while in Daneopsis, another related genus, the synangia more closely resemble those of Daneæ. The suspicion is not wanting, however, that the fronds of Terniopteris may have been those of a Cycad rather than a Fern.

In the Palæozoic rocks, we find a plexus of fronds of the Sphenopterid and Pecopterid type, bearing exannulate sporangia, arranged independently in the sorus, or united to form synangia. These have been generally regarded as of Marattiaceous affinity. The great difficulty, at the present moment, is to decide as to the true nature of these fronds. Did they belong to true homosporous Ferns, or were they the male fronds of Pteridosperms? On the present evidence, I am inclined to think that a large number, though not necessarily all, will eventually prove to fall under the latter category. We already know that one Pecopteris (P. Pluckeniæ), though not a very typical member of the genus, belonged to a Pteridosperm. Also the male frond of the Bennetitææ, a group descended from the Pteridosperms, is known to have borne sporangia not unlike those of the Palæozoic Pecopterids and the modern Marattiææ.

The anatomy of the tree-fern, Psaronius, affords the most trustworthy evidence, at present, of the existence of the Eusporangiatae in Palæozoic times; though there would appear to be little to indicate that this group ever attained to the position of a dominant or ruling type in either the Palæozoic or truly Mesozoic floras.
IV.

[Read 15th March, 1906.]

The genera *Araucaria* and *Agathis* may be regarded as surviving members of an ancient group of Gymnosperms distinguished by several well-marked characters from other Coniferales. During the Mesozoic era the Araucarieae were widely distributed and played a prominent part in the Northern floras; they are now confined to comparatively restricted areas in the Southern hemisphere. Our object is to enquire into the evidence on which the statement as to the antiquity of the Araucarieae is based, and to ascertain whether the records of the rocks lend support to a view expressed by some botanists that they represent the oldest section of the Coniferales. A further question suggested by the examination of palaeontological data, is the possession by *Agathis* and *Araucaria* of characters which may be designated primitive.

In view of the widely accepted conclusion that Cycads and Ferns were descended from common ancestors, it is important to consider whether the contention that Conifers as well as Cycads are derived from a Filicinean stock is supported by satisfactory evidence. While accepting Cycads as descendants of Filicinean ancestors, the Author is led to the conclusion that Conifers, or at least the Araucarieae, should be referred to a Lycopodiaceous origin.

The following headings may serve to suggest some of the questions to be dealt with in discussing the origin of the Araucarieae:

i. The widespread occurrence of Mesozoic fossils referred to the Araucarieae.

ii. Features in which *Agathis* and *Araucaria* differ from other members of the Coniferales: the isolated character of the Araucarieae and the primitive nature of some of their peculiarities.

iii. Examination of the evidence adduced in favour of including Conifers with Cycads as descendants of Filicinean ancestors.

iv. Comparison of the vegetative and reproductive shoots of the Araucarieae with those of recent and fossil Lycopods from the point of view of a close relationship between the two phyla.
V.

On the Structure of the Stem and Leaf of *Nuytsia floribunda*,
R. Br. By E. J. Schwartz, F.L.S.

[Read 5th April, 1906.]

Nuytsia floribunda is a member of the Loranthaceae and a native of West Australia; unlike other members of this order, it is non-parasitic and a tree attaining a height of some 30 feet. The leaves are linear-acute, of length about 1 inch, and the stomata, which are in more or less regular rows, are transverse to the leaf-axis. In section, the leaves show a meristele of three bundles embedded in a water-storing tissue which is in turn surrounded by the assimilatory tissue; one or more resin-sacs are to be found above the bundles. The stem has many points of interest—a heterogeneous strongly thickened and pitted pith containing a central resin-canal proper to the stem itself, accompanied by three or more perimedullary canals; islands of phloem and cambium embedded in secondary xylem; and a cork of epidermal origin,—all points of difference from the other members of the Loranthaceae. The assimilatory tissue throughout the plant is rich in tannin, and no calcium-oxalate crystals are to be found in the stem.

The paper was illustrated by slides from photographs of the author's preparation.

VI.

The Affinities of Pteridosperms and Gymnosperms.

By Dr. D. H. Scott, F.R.S., Sec.L.S.

[Read 3rd May, 1906.]

As an advocate, for the last ten years, of the Filicinean origin of Cycads, and probably of Gymnosperms generally, I should like to remove a misapprehension which appears to exist in some quarters. It was suggested in 1895 that the Cycadofilices *Lyginodendron* and *Hetiarangiun* were the "derivatives of an ancient and generalized (or rather non-specialized) Fern-stock," and in 1899 the opinion was expressed that this "common stock was to be sought among simple Ferns or Fern-like plants." At no time has it been held that the Cycadofilices or Pteridosperms, to use the current name, sprang from any family of Ferns already known, still less from any family represented in the recent Flora.

So far as the morphological evidence is concerned, the position is unaltered at the present time. The important discoveries of the seeds of the Pteridosperms scarcely touch this question, for
these organs are of too advanced a type to throw light on the probable derivation of the group.

The anatomical characters clearly indicate an affinity with the Fern-stock closer than that with any other Cryptogamic phylum. The male organs, now beginning to be known, further support this affinity. Hence we are led to conclude that the Pteridosperms had a common origin with the Ferns, and may assume that the common ancestors resembled Ferns in being Cryptogamic rather than Spermophytic.

The difficulty arises from the surprising extension of the Pteridosperms, which threaten to absorb everything Palæozoic that used to be called a Fern. But this idea is of the nature of a "scare." Though the Ferns were not the dominant group in the Palæozoic that they were once supposed to be, there is as yet no justification for the extreme view that they were non-existent. The important position of the Botryopterideæ as a synthetic family, perhaps most nearly representing among known Palæozoic plants the common stock from which Ferns and Pteridosperms may have sprung, has already been indicated by a previous speaker. I agree with him that the family is best regarded as a special type of a much more extensive group.

As regards the other great question under discussion—the affinities of the Coniferae—the data are still very inadequate, for we have little knowledge of the structure of early forms of Coniferae. In some Permian plants referred to Araucarieæ, the structure of the wood was of the Araucarioxylon type, a widespread form of wood, common to Cordaiteæ, Pteridospermæ, and even Botryopterideæ, but almost wholly absent from the Lycopod phylum. Whatever this character may be worth, it favours a common origin of the Araucarian Conifers with the Cordaitean and Pteridospermic series.

The existence of the Cordaiteæ, offering clear points of agreement at once with Pteridosperms, Cycads, Ginkgoales, and Conifers, certainly suggests that all these groups ultimately had a common origin from the same great plexus of primitive Ficinææ. Ginkgo itself forms a bond of union between the Cordaitean phylum and the Taxaceæ among Conifers.

The Lycopods attained a high development on their own lines, producing seed-like organs in certain cases, and showing some anatomical analogies with Conifers. A more exact comparison appears to indicate that these characters are homoplastic, and not indicative of any affinity with the higher plants.
VII.

On the Original Portraits of Linnaeus.
By William Carruthers, F.R.S., F.L.S.

(With Plates 1–8.)

[Read 21st June, 1906.]

At the Annual Meeting in May 1889, I presented to the Society the results of some investigations into the portraits of Linnaeus. I had not then seen any of the original paintings. But having made a considerable collection of the published portraits, which is now in the possession of the Society, I classified them, reducing them to nine different types. This opinion has been practically confirmed by subsequent inquiries. I resolved to inspect the authoritative originals from which these nine types of engravings had their origin. In 1891 I visited the various localities where these portraits are preserved. This led me slightly to modify and also to add to the statements published in the Proceedings of the Society for the Session 1888–89. After too long an interval I venture to place before the Society the results of my further investigations, quickened by the fact that the 23rd of May 1907 is the bicentenary of the birth of Linnaeus, and that special interest will then be shown in every thing that relates to that great naturalist. I procured original photographs of all the authentic portraits, and I trust that these with the notes I submit may be of some interest to the Fellows of this Society.

I have been much assisted in this work by my friend Mr. Antony Gepp, F.L.S., and still more by his brother, the late Mr. Hubert M. Gepp, Adjunct Professor in Upsala University, who became much interested in my investigations, secured for me many engravings of Linne, and supplied me with information and with personal help when I visited Sweden.

The earliest portrait of Linne was painted by Martinus Hoffman at Hartekamp, near Haarlem, for Dr. George Clifford, a rich merchant and burgomaster, who was of English descent, his ancestors having been for some time in Holland. Dr. Clifford had a great love for plants, and had collected many rare and interesting specimens in his fine garden. On the recommendation of Boerhaave, Dr. Clifford engaged Linne to name and classify all his plants. Linne had gone to Harderwyk to take his doctorate in the university there, which he did on the 24th June, 1735. His funds were exhausted, but the naturalists in Holland were kind and hospitable: in 1736 he took up his abode at Hartekamp, where he found in the owner of the house a cordial and liberal
friend. He published the 'Hortus Clifortianus' in 1737, and in
the same year the 'Flora Lapponica.' The frontispiece to this
work, dedicated to Clifford, represents a Lapland landscape with
Linné in the foreground, having on his knees the "drum," which
appears in the full-length picture. This frontispiece was drawn by
Hoffman, who in the same year painted the portrait of Linné
for Clifford. This fine painting has remained in his family until
this time, though no longer at Hartekamp. In 1891 Mr. Clifford
was living at Nieuwetshuys, and when I visited him there he was
most helpful. The painting has been very carefully conserved and
is in extremely good condition. He gave me leave to have a
photograph taken from it. He traced his family back to the days
of William the Conqueror, and showed me an interesting record
of the family history, turning to the pages which contained con-
temporary notes about Linné while he was at Hartekamp.

The original portrait has never been reproduced. Linné is
standing with his face turned somewhat to the left, in his Lapland
dress, with his gloves and various implements hanging from an
ornamented leathern girdle. His right hand holds a plant of
Linnœe in flower but without a label, and his left hand supports a
large oval object which has puzzled many, but in the frontispiece
to the 'Flora Lapponica' this is shown in two separate portions
which have spread out on them small objects: it is apparently
a press for drying plants. Around the sides of this press are
written the words:—"Carolus Linnaeus e Lapponia Redux.
Æ Etat. 30. Anno 1737. Mart. Hoffman fecit 1737." There is
nothing on the canvas besides the portrait of Linnæus.

A replica or a copy of this portrait, painted in 1739, came into
the possession of Dr. Robert Thornton towards the end of the
eighteenth century. This is known only from the mezzotint
engraving by H. Kingsbury, which was "published April 6, 1795,
by H. Kingsbury, No. 4 Warren Street, Fitzroy Square." In
1804 Dr. Thornton had an exhibition of his botanical paintings at
49 New Bond Street, and the printed catalogue states that this
painting is "A whole length of Linnaeus aged only thirty-two, in
his Lapland Dress. By Hoffman. An Original Picture. This
was painted for Gronovius in Holland and is the only original
Picture of Linnaeus in England." Linné was indebted for much
friendly help to Gronovius; at his suggestion Boerhaave intro-
duced Linné to Clifford, and at the expense of Gronovius the
first edition of the 'Systema Naturæ' was published at Leyden
in 1735. It is very likely that he would desire to possess the
portrait of a friend he valued so highly.

In 1811 Thornton got permission from Parliament to dispose of
his paintings by a lottery, but this was unsuccessful. Thornton
lived for twenty-six years after this, having died at his residence
in Howland Street, Fitzroy Square, on June 22nd, 1837. I have
failed to discover what has become of this or any of the other
botanical paintings that belonged to Thornton. The only help
known by which one can form an idea of this painting is Kingsbury's mezzotint. There are in it several obvious modifications of the Clifford portrait. The standing collar is larger, the right hand holding the plant is more raised above the girdle, and there is attached to it a paper label with "Linnea Gronov." written on it; a small horn is suspended from the belt between the clip which carries the gloves and the tassle, the ornaments on the drying-press are much modified, and the feet are wider apart. These modifications suggest that they were introduced by the original artist in painting a replica, though they may have been introduced by Kingsbury in his engraving. The most obvious difference between the mezzotint and the Clifford portrait is the column on which are placed eight volumes of Linnè's works, each of them labelled, and all published in 1737 or the two previous years. If the engraver in 1795 had been working from a replica of the original painting, he may have thought it necessary to introduce the column in order to convert the comparatively narrow painting into his nearly square engraving. But, on the other hand, the works selected would have been much more likely to consist of the more important ones published after 1737. On the whole, it appears to me more probable that Thornton's painting was a replica in which the original artist introduced several modifications, and that it was painted for Gronovius. If it still exists it ought to be found in England, and is deserving of a careful search; the name being painted on the side of the drying-press would enable it to be easily identified.

There is a modern, three-quarters portrait based on the Clifford portrait in the possession of the Zoological Society of Amsterdam.

II. 1739. Scheffel.

There are two portraits in Linnè's house at Hammarby by Scheffel, a well-known Swedish portrait-painter. The one is inscribed on the back of the canvas—"Carl Linnaeus: Med. Doctor, Dioscorides 2nus dictus. Natus 1707 d. 13 Maij. I. H. Scheffel, p: 1739." The other is dated 1755, and though no name of a painter is given, there is good reason for saying that it was the work of Scheffel in the year stated. This will be more fully examined when I describe that portrait. The earlier one is of Linnè as a bridegroom, when he was 32 years of age. It is now in a bad condition. It represents Linnè about the age specified. The painting, however, so exactly agrees in its general treatment with Scheffel's other portrait taken sixteen years later, that I cannot get rid of the conviction that Scheffel, having produced a good likeness in 1755, painted his second portrait as a bridegroom, giving his own idea of what Linnè would be like at that time. Linnè returned in July 1738 from Holland by way of France to Sweden, and soon thereafter he was betrothed to Sarah Elizabeth Moræus, to whom he was married in June 1739.
The engraving by Ruckman after Scheffel is from this painting: I formerly, being misled by the softness of the engraving, thought it represented a third and younger painting by Scheffel.

III. 1740. Ehrensverd.

The next portrait of Linne, taken when he was 33 years of age, was the work of Augustus Ehrensverd. The original engraved plate was, in 1891, in the possession of Baron Lewenhaupt, Upsala. It has not been published, but impressions have been taken from the plate at different times and circulated privately. Eichhorn had in his collection a print taken before the plate was lettered, and our Society possesses in a volume that was in the Library of Linne a print inserted while it was in his possession. The comparatively recent print in our collection of the Linnean portraits was presented by Dr. G. Lindström.

The engraving is lettered "Carolvs Linnaeus Med: Doct: Natus 1707 Maj 13Ä Etat: 33," and immediately below the portrait "Au. Ehrensverd amica manu sc. 1740." The engraving has been made from life or from a drawing, so that in the print the whole is reversed. The wart which was on Linne's right cheek appears on the left cheek. The face is turned to the left, the right hand rests on a volume labelled on the back "Syst. Nat.," while the left hand, resting on the right, holds a flowering plant of *Linnaea borealis.* On his left shoulder is an academic gown which comes round below the right arm to the front of the body in great folds.

Ehrensverd's engraving is the original of most of the 8vo plates which illustrate the works of Linne.

There is in the possession of Prof. Tullberg, Upsala, a small painting on vellum, 5 inches by 3\(\frac{1}{2}\), which is certainly copied from Ehrensverd. The general pose of the figure, and the similar accidental peculiarities like the creases in the sleeve of the coat and in the gown, are conclusive evidence of this. The direction of the figure is the same as in the metal plate engraved by Ehrensverd, and consequently differs from that on the prints from his plate. The left hand rests on the volume, and the right hand holds the *Linnaea.* Besides an obvious feebleness and softness in the portrait, this picture and its reproductions can easily be distinguished from its original by the narrow black tie which passes through the holes in the shirt collar, by the less luxuriance of the wig, and by the coniferous trees introduced in the background.

Tullberg's small vellum painting was engraved by Bernigeroth, and published as the frontispiece to the Stockholm and Leipzig editions of the 'Systema Naturæ' issued in the same year, 1748. The engraver did not reverse the portrait, so that the aspect of the figure in the print is the same as in that from Ehrensverd's plate. Bernigeroth states that the original from which he worked was "delin. 1748," and that is probably the date of Prof. Tullberg's painting. The softness in the treatment of the features in that
painting, and reproduced in Bernigeroth's engraving, is probably intended to cover the change that eight years would produce in the face of Linné.

Further modifications were subsequently introduced by Bergquist and Tanje in their engravings after Bernigeroth.

IV. and V. 1747. Rehn.

The two sketches by J. E. Rehn, dated 1747, are now known only by reproductions. Rehn was a copper-plate engraver, who was sent by Count Tessin to Paris to study under Le Bas.

The first portrait by Rehn is a full-length sketch of Linné in his every-day dress when he was 40 years old. The original drawing came into the possession of the Right Hon. Henry W. W. Wynne. It was reproduced by J. S. Templeton, and published by Colnaghi for the proprietor in January 1830. I have been unable to discover the original: the representatives of Mr. Wynne cannot discover it in the collections left by him, and Messrs. Colnaghi know nothing of the original. The lithograph represents Linné in a long frock coat, a frock vest, knee breeches, and gaiters buttoned to the knee. He has on a wig, wears a sword, and seems to be meditating under the influence of the weed, which he is enjoying from a long-stemmed pipe.

The second sketch is an outline head and shoulders. It is known from a lithographic reproduction which is said to be the "Facsimile d'un profil dessiné d'après nature par J. E. Rehn." In the Royal Library, Stockholm, there is a copy having "en 1747" inserted before "par J. E. Rehn." It seems to me very probable that this profile was made for the medal struck in honour of Linnaeus in 1646, and dedicated to Count Tessin by four noblemen. In so far as the portrait on this medal differs from Inlander's medallion it agrees with Rehn's sketch. The die-sinker executed the profile directly on the metal, and the portrait on the medal came out reversed. The discrepancy in the dates is not serious, and the likelihood of Rehn's desire to acknowledge in some way his gratitude to Count Tessin favours this suggestion.

VI. 1751. Lundberg.

In 1751, or the following year, Gustaf Lundberg made a beautiful pastel portrait of Linné. Lundberg was born in 1695. When he was 22 years of age his master David von Kraft sent him to Paris, where he studied under Rosalba, who introduced pastel painting into France. Lundberg became famous in this art. He returned to Sweden, and in 1750 was appointed painter to the Court. He painted many portraits of the Royal family. Linné resided at the Court at Drottningholm Palace in 1751, and afterwards in 1752 and the beginning of 1753 at Ulriksdal and at Stockholm, being occupied in naming and cataloguing the extensive natural history collections belonging to members of the Royal
family. At one or other of these places the court painter produced this portrait of Linne in his court dress. It is a striking likeness and a beautiful work of art. It is not signed; the artist seldom signed his portraits, but those acquainted with his works are satisfied that this was painted by Lundberg.

Mr. Olof Wijk purchased the painting at the sale in 1888 of the collections of Mr. Bomans, who obtained it from a descendant of Linne. Considerable doubt has been entertained as to this being a portrait of Linne at all. I am, however, able to present some evidence which appears to me to establish that it is a genuine portrait. In the collection of the Linnean portraits in the Royal Library, Stockholm, there is a lithograph by Carl Schroeder, which suggested to me Lundberg's pastel. The lithograph was lettered "Carl von Linne . . . Das Original-Gemälde befindet sich im Herzoglichen Museum zu Braunschweig." That I might see this painting I went to Brunswick, and found that the painting was a copy of Lundberg's pastel. The entry in the official catalogue stated that this portrait of Linne was a "Brustbild vermutlich nach einen Pastell gemalde von G. Lundberg." I have no doubt that this is so, and that the original is in the possession of Mr. Wijk.

The Society is indebted to Mr. Wijk for an excellent photograph of this fine portrait. The photograph includes the old frame of the pastel on which are carved the initials of Linne's name.

VII. 1755. Scheffel.

In 1755 J. H. Scheffel, a portrait-painter in Sweden during the first half of the eighteenth century, painted a portrait of Linne when he was 48 years of age. The original painting is at Hammarby. It is a half length (30½ inches by 25), the face is turned to the left, but the eyes look towards the spectator. In his right hand he holds a Linnaea, and the cross of the Polar Star is attached to his coat. On the back of the canvas is written "Carol. Linnaeus. Archiator [sic], Professor Upsaliensis, Eques de Stella Polari, nat: 1707 Maij 13. delineatus 1755." In the accurate engraving by I. M. Preisler it is said that his age when the portrait was taken was 55; this is an error.

Dr. Fridr. Ohren of Jerfso, in the province of Helsingland, has a portrait which is claimed to be the original. His wife is a lineal descendant of Linne. It is a copy of Scheffel's painting, and it is not at all likely that it was the work of that painter. The copy has a softer and somewhat meaningless face.

Another copy of Scheffel's portrait was presented to the Smaalands Nationshus, Upsala, by Dr. Nordstedt in 1822. In his history of the Smaalands Nationshus, Palmberg says that this is a copy of Scheffel's picture at Hammarby, and a very poor copy it is.
VIII. 1773. Inlander.

By command of the King a profile model in wax of Linné was made by Carl Fridr. Inlander in 1773. This medallion is preserved in the house at Hammarby. On the back of it is inscribed in the handwriting of Linné:

"Carl v. Linné.
1773. Aug. 17.
Carl Fridr. Inlander
bor i Stockholm Göthgatan;
Glasmastare Sköld."

The last three lines were kindly translated for me by Dr. Skottsberg (July 5, 1906)—

Carl Fridr. Inlander
lives in Stockholm, Göthgatan;

This must be considered the original portrait, but Inlander produced two replicas: one of these is in the possession of the Royal Academy of Sciences, Stockholm, and the other was presented to the Linnean Society by Sir Joseph Banks on the 2nd February 1790, and is now hanging in our library. These medallions are all certainly by Inlander, and may therefore be looked upon as equally authentic portraits. In a letter from Linné, written on the day after Inlander finished the medallion, he says that Inlander "has modelled me in wax so skilfully that all say they had never seen anything more skilfully done or more like me."

The reproduction in the royal medal by Liungberger, which was issued in 1778, is far from satisfactory.

Prof. Tullberg has a silhouette reduced to about two-thirds of the original and looking to the left.

The alabaster medallion presented to the Linnean Society by the Medical Society of Stockholm is a reproduction of Inlander's portrait.

The beautiful Wedgwood Cameo was no doubt reproduced from the Inlander medallion in the possession of the Society.

IX. 1774. Krafft.

In the following year, 1774, Per Krafft, a famous Swedish painter, and member of the Stockholm Academy, painted a portrait of Linné for the College of Physicians in Stockholm (formerly Sundhets Collegium, now Medicinalen Styrdsens), to be placed on the wall of their meeting-room as one of the founders of the College. It is a half-length, nearly full face but turned very little to the left, with the eyes directed towards the spectator. The left hand rests on the back of an octavo volume, holds a plant of Linnea, and partly covers the cross of the Polar Star. The portrait was for some years at the College of Physicians, and was engraved by Akrel in 1797, while it was still there. In March 1890 Prof. Thöre M. Fries informed me that the portrait existed.
no more at the College, and where it was gone no one knew. When I visited the College in 1891, the Secretary showed me Eichhorn's catalogue of the portraits in their possession. Under Linnæus by Krafft, it was said that the painting had been lost and it was not known where it now was. I afterwards, with the kindly help of the late Baron Nordenskjöld, made a careful examination of the portraits of Linné at the Royal Academy of Sciences. The well-known portrait presented by the artist, Roslin, to the Academy had the best position on the wall; above it was a copy of the oil-painting belonging to the Zoological Society of Amsterdam, a three-quarters reproduction after the Clifford portrait. Above that, high on the wall, was a portrait which I recognized to be like the engravings of Krafft's painting. I suggested that it might be the lost picture that had belonged to the Medical College. The Baron had it brought down from the wall, and on careful examination we found it was signed and dated "Krafft 1774," and on the back of the canvas was written "Carl v. Linné 1774 ætat. 67." There could be no doubt that this was the lost painting.

Linné had his first paralytic stroke in May 1774, which obliged him to relinquish the more active part of his professorial duties, and to close his literary labours. The portrait exhibits no traces of this malady, and was probably painted before May.

Krafft's portrait may have been in the possession of the Academy of Sciences before 1833, for Adam Afzelius, in his "Egenhändiga Anteckningar af Linnaeus" published in that year, says (p. 67) that the Royal Academy had Linné's portrait painted to put among its founders, likewise the medallion Akrell had previously made in wax, both very like. But Inlander, not Akrell, was the artist of the medallion. The reference to the portrait may be that of Roslin, but that was not painted for the Academy but was presented to it. If for Royal Academy we substitute Medical College, the statement would apply to Krafft's portrait. But one cannot say from the defective and erroneous statement what Afzelius really meant.

The Linnean Society owes to the generosity of the Royal Academy of Sciences, Stockholm, a faithful reproduction of Krafft's beautiful portrait.

There has just been published an admirable collotype, two-thirds the size of the original, reproduced by J. Cederquist of Stockholm.

There is at the Medical College a copy by John von Breda of this portrait. It is very softly painted; the wrinkles and warts on the face have been omitted. There are also some modifications in the details,—the necklace (?) is tied in a single knot, and the left hand holding the Linnaeus rests on the page of an open book.

Magnus Hallman, described as a student of Linné, made several copies of Krafft's portrait. Two of these are to be found in the house of Linné at Hammarby. Both are very poor reproductions. One is not signed, the other has on the back of the canvas "Magn. Hallman pinxit 1769." I have no doubt that both of them are posthumous portraits based chiefly on Krafft, but with suggestions
from Roslin and from the engravings after Ehrensverd which appeared in some of Linné's works. The mysterious mass of paint making the portrait appear as if springing out of a cloud, was probably suggested by the academic gown which appears in these engravings.

The small portrait by Hallman, presented to the Society by its former President, Lord Avebury, is a more creditable work. It seems to be influenced more by Roslin than by Krafft.

What appears to me to be a portrait based on the signed painting by Hallman at Hammarby is in the possession of Prof. Tullberg, Upsala. It has no history and the painter is unknown. The artist has tried to get rid of the poor work of Hallman, and has produced a more intellectual looking face, but the features are not those one is familiar with in the authoritative portraits by Scheffel, Inlander, Krafft, and Roslin. The face is shorter and broader than that of Linné, and the nose is too much improved. The cloud-like gown is also introduced.

Prof. Tullberg has a small water-colour portrait which has much in common with his large portrait. It was "delin. 1747" by N. P. Petreus, but it represents a much older man than Linné in his fortieth year.

X. 1775. Roslin.

The best known portrait of Linné is that painted by Alexander Roslin in 1775. Roslin was a Swede, born in 1718. He studied in Germany and Italy, and settled in Paris in 1752. He visited Sweden in 1744-75, when he painted portraits of the Royal family and also one of Linné. He died in 1793, being 60 years old.

The portrait of Linné was taken to Paris to finish, and was there engraved by Bervie, under the superintendence of Roslin, at the expense of the Stockholm Academy. The painting was presented by the artist to the Academy in 1779. It is not quite a half-length. The face is turned a little to the left and the eyes look on the spectator. The principal wart is shown on the right cheek on a line with the mouth. The queue of the wig rests on the right shoulder. The lower arm of the cross of the Polar Star has the extremity cut off, and the Linnaea rises from the button-hole which carries the ribbon of the cross.

The face was not reversed in Bervie's engraving, but the dress was modified to retain the cross of the Polar Star and the Linnaea on the left side.

Roslin painted a replica which he presented to the widow of Linné, who sold it to King Gustaf III., and it was placed by him in the Castle of Gripsholm, where it still remains. I had obtained a photograph of this portrait, which showed it to be an oval. This however is the work of the photographer; the painting in size and in every way agrees with that in the possession of the Academy. On the back of the canvas is written "Carol. v. Linné. natus 1707 Maij 13. delineavit 1775."
Archbishop von Troil commissioned Laurenz Pasch, the younger, to paint for him a portrait of Linné. He copied the Roslin in the Academy, but made his painting a three-quarters length. Linné is seated at a table on which his left hand rests holding a plant of *Linnaea*, which is left out from his coat. The right hand rests on his knee. This painting was presented by the Archbishop to Sir Joseph Banks in acknowledgment of certain civilities shown by Sir Joseph to his son. It was bequeathed to Robert Brown, who presented it to the Linnean Society in 1853; it now hangs in the Library. While it carefully reproduces the likeness by Roslin, the additions which Pasch has made converts Roslin's portrait into a fine picture, and in it the Society possesses the most beautiful memorial of the illustrious naturalist whose name it bears.

The Society has in its possession another painting from the Roslin portrait, presented to the Society in 1814 by Joseph Sabine, one of the original Fellows of the Society. For many years it hung in the meeting-room behind the President's chair, but has been displaced by the reproduction of the Krafft portrait recently presented to the Society. This portrait has no claim to be original. Nothing is known of its history before it came into the possession of the Society. It is without doubt a reproduction in oil of Bervie's or Alix's engraving from Roslin's painting.

The following list gives the materials in the possession of the Linnean Society bearing on the original portraits of Linné:—

1. **1737.** 30 years old. **Hoffman.** Photograph of the original painting in the house of Mr. Clifford, Nieuwetsluys, Holland.
2. **1739.** 32 years old. **J. H. Scheffel.** Photograph of the original painting in Linné's house, Hammarby.
3. **1740.** 33 years old. **Au. Ehrensverd.** Print from the original plate in the possession of Baron Lewenhaupt, Upsala.
5. **1747.** 40 years old. **J. E. Rehn.** Profile facsimile. It is not known where the original is.
6. **1752.** 45 years old. **G. Lundberg.** Photograph of the original pastel in the house of Mr. Olof Wijk, Gothenburg.
7. **1755.** 48 years old. **J. H. Scheffel.** Photograph of the original painting in Linné's house, Hammarby.
8. **1773.** 66 years old. **C. F. Inlander.** Replica of the original medallion, presented by Sir Joseph Banks, 1790.
9. **1774.** 67 years old. **P. Krafft.** Photographic of the original painting, and copy in oil of the original, presented by the Royal Swedish Academy of Sciences, Stockholm.
CARL VON LINNÉ.

From the original by M. Hoffman in the possession of Mr. Clifford,
Nieuwetsluys.
CARL VON LINNÉ.

From the original by J. Scheffel. In Linné's house at Hammarby.
Fig. 1.
From the engraving by Ehrensverd, "Amica manu sc."

Fig. 2.
From the small painting belonging to Prof. Tullberg, Upsala.

Fig. 3.
From the lithograph of J. E. Rehn’s sketch. The original is lost.

Fig. 4.
From the facsimile of J. E. Rehn’s sketch.
CARL VON LINNÉ.

From the original by G. Lundberg in the possession of Mr. Olof Wijk, Gothenburg.
CARL VON LINNE.

From the original by J. Scheffel. In Linné's house at Hammarby.
CARL VON LINNÉ.

From the original by C. F. Inlander, at the Linnean Society, London.
CARL VON LINNÉ.

From the original by P. Krafft sen., at the Royal Swedish Academy of Sciences, Stockholm.
CARL VON LINNÉ.

From the original by A. Roslin at the Royal Swedish Academy of Sciences, Stockholm.
10. **1775.** 68 years old. A. Roslin. Photograph of the original painting, and copy in oil of the original, presented by the Royal Swedish Academy of Sciences, Stockholm. And copy by Pasch of the original, presented by Robert Brown, 1853.

A list of the published engravings and lithographs of Linné will be found in the 'Proceedings' of the Society, Session 1838-9, pp. 28-30. This was chiefly based on a collection I made, which was presented to the Society.

EXPLANATION OF PLATES.

CARL VON LINNÉ.

All these reproductions present the same aspect of face and figure as the original paintings or engravings from which they have been taken.

Plate 1.

From the original by M. Hoffman in the possession of Mr. Clifford, Nieuwetsluyys.

Plate 2.

From the original by J. Scheffel. In Linné's house at Hammarby.

Plate 3.

Fig. 1. From the engraving by Ehrensverd, "Amica manu sc."
Fig. 2. From the small painting belonging to Prof. Tullberg, Upsala.
Fig. 3. Full length; from the lithograph of J. E. Rehn's sketch. The original is lost.
Fig. 4. Profile bust; from the facsimile of J. E. Rehn's sketch.

Plate 4.

From the original by G. Lundberg in the possession of Mr. Olof Wijk, Gothenburg.

Plate 5.

From the original by J. Scheffel. In Linné's house at Hammarby.

Plate 6.

From the original by C. F. Inlander, at the Linnean Society, London.

Plate 7.

From the original by P. Krafft, sen., at the Royal Swedish Academy of Sciences.

Plate 8.

From the original by A. Roslin at the Royal Swedish Academy of Sciences.
BENEFACtIONS.

List in accordance with Bye-Laws, Chap. XVII. Sect. 1, of all Donations of the amount or value of Twenty-five pounds and upwards.

1790.
The Rt. Hon. Sir Joseph Banks, Bart.
Cost of Copper and engraving of the plates of the first volume of Transactions, 20 in number.
The same: Medallion of C. von Linné, by Inlander.

1796.
The same: a large collection of books.

1800.
Subscription towards the Charter, £295 4s. 6d.
Claudius Stephen Hunter, Esq., F.L.S. (Gratuitous professional services in securing the Charter.)

1802.
Dr. Richard Pulteney.
His collections, and £200 Stock.
Aylmer Bourke Lambert, Esq.
Portrait of Henry Seymer.

1804.
Sir Joseph Banks, Bart.
His collection of Insects.

1807.
Richard Anthony Salisbury, Esq.
Portrait of D. C. Solander, by J. Zoffany.

1811.
Sir Joseph Banks, Bart.
His collection of Shells.
Mrs. Pulteney.
Portrait of Dr. R. Pulteney, by S. Beach.

1814.
Joseph Sabine, Esq.
Portrait of C. von Linné, after Roslin, reversed.
Dr. John Sims.
Portrait of Dr. Trew.

1818.
Subscription of £215 6s. for Caley’s Zoological Collection.
1819. The Medical Society of Stockholm.
 A medallion of Linnaeus in alabaster.

1822. Bust of Sir Joseph Banks, by Sir F. Chantrey, R.A.
 Subscription of the Fellows.

1825. The late Natural History Society.
 £190, 3½ Stock.

1829. Subscription for the purchase of the Linnean and Smithian Collections, £1593 8s.

1830. Sir Thomas Grey Cullum, Bart.
 £100 Bond given up.

1832. The Honourable East India Company.
 East Indian Herbarium.

1833. Subscription for Cabinets and mounting the East Indian Herbarium, £315 14s.

1835. Subscription portrait of Robert Brown, by H. W. Pickersgill, R.A.

1836. Subscription portrait of Edward Forster, by Eden Upton Eddis.
 Subscription portrait of Archibald Menzies, by E. U. Eddis.

1837. Subscription portrait of Alexander MacLeay, by Sir Thomas Lawrence, P.R.A.

1838. Collections and Correspondence of Nathaniel John Winch.
 Portrait of Dr. Nathaniel Wallich, by John Lucas, presented by Mrs. Smith, of Hull.

1839. Subscription portrait of William Yarrell, by Mrs. Carpenter.

1842. David Don: herbarium of woods and fruits.
 Archibald Menzies: bequest of £100, subject to legacy duty.
 Portrait of John Ebenezer Bicheno, by E. U. Eddis, presented by Mr. Bicheno.
1843.
Subscription in aid of the funds of the Society. £994 3s.
Subscription portrait of Sir William Jackson Hooker, by S. Gamba-
bardella.

1845.
Microscope presented by Subscribers.

1846.
Joseph Janson: £100 legacy, free of duty, and two cabinets.

1847.
[Bequest of £200 in trust, by Edward Rudge; declined as set forth
in Proceedings, i. pp. 315–317.]

1849.
Portrait of Sir J. Banks, Bart., by T. Phillips, R.A., presented by
Capt. Sir E. Home, Bart., R.N.

1850.
Subscription portrait of the Rt. Rev. Edward Stanley, D.D.,
Bishop of Norwich, by J. H. Maguire.

1853.
Portrait of Carl von Linne, by L. Pasch, presented by Robert
Brown.
Pastel portrait of A. B. Lambert, by John Russell, presented by
Robert Brown.

1854.
Professor Thomas Bell, £105.

1857.
Subscription portrait of Prof. T. Bell, P.L.S., by H. W. Pickersgill,
R.A.
Thomas Corbyn Janson: two cabinets to hold the collection of
fruits and seeds.
Pleasance, Lady Smith: Correspondence of Sir J. E. Smith, in
19 volumes.

1858.
Subscription portrait of Nathaniel Bagshaw Ward, by J. P.
Knight.
Subscription for removal to Burlington House, £1108 15s.
Diary of Carl von Linne, and letters to Bishop Menander,
presented by Miss Wray.
Dr. Horsfield's Javan plants, presented by the Court of Directors
of the Hon. East India Company.
Dr. Ferdinand von Mueller's Australian and Tasmanian plants,
including many types.

1859.
Books from the library of Robert Brown, presented by J. J.
Bennett, Sec.L.S.
Robert Brown: two bonds given up, £200.
1861.
Subscription bust of Robert Brown, by Peter Slater.
Collection of birds' eggs, bequeathed by John Drew Salmon, F.L.S.

1862.
The Linnean Club: presentation bust of Prof. T. Bell, by P. Slater.

1863.
Subscription portrait of John Joseph Bennett, by E. U. Eddis.

1864.
Beriah Botfield, Esq.: Legacy, £40 less Duty.

1865.
Executors of Sir J. W. Hooker, £100.
George Bentham, Esq.: cost of 10 plates to his "Tropical Leguminosae," Trans. vol. xxv.

1866.
Dr. Friedrich Welwitsch: Illustrations of his 'Sertum Angolense,' £130.

1867.
George Bentham, Esq.: General Index to Transactions, vols. i.–xxv.
Royal Society: Grant in aid of G. S. Brady on British Ostracoda, £80.

1869.
Carved rhinoceros horn from Lady Smith, formerly in the possession of C. v. Linné.

1874.
Subscription portrait of George Bentham, by L. Dickinson.
George Bentham, Esq., for expenditure on Library, £50.

1875.
Legacy from James Yates, £50 free of Duty.
Daniel Hanbury, £100 less Duty.

1876.
Legacy of the late Thomas Corbyn Janson, £200.
Charles Lambert, £500.
George Bentham, Esq.: General Index to Transactions, vols. xxvi.–xxx.

1878.
Subscription portrait of John Claudius Loudon, by J. Linnell.
Subscription portrait of Rev. Miles Joseph Berkeley, by James Peel.

1879.
Rev. George Henslow and Sir J. D. Hooker: Contribution to illustrations, £35.
1880.
The Secretary of State for India in Council: cost of setting up Dr. Aitchison's paper, £36.

1881.
George Bentham, Esq., special donation, £25.
The same: towards Richard Kippist's pension, £50.
Portrait of St. George Jackson Mivart, by Miss Solomon; presented by Mrs. Mivart.

1882.
 Executors of the late Frederick Currey: a large selection of books.
Subscription portrait of Charles Robert Darwin, by Hon. John Collier.
The Secretary of State for India in Council: Grant for publication of Dr. Aitchison's second paper on the Flora of the Kurrum Valley, £60.

1883.
Sir John Lubbock, Bart. (afterwards Lord Avebury).
Portrait of C. von Linné, ascribed to M. Hallman.
Philip Henry Gosse, Esq.: towards cost of illustrating his paper, £25.
Royal Society: Grant in aid of Mr. Gosse's paper, £50.

1885.
 Executors of the late George Bentham, £567 11s. 2d.
Subscription portrait of George Busk, by his daughter Marian Busk.

1886.
A large selection of books from the library of the late Spencer Thomas Cobbold (a bequest for a medal was declined).
Sir George MacLeay, Bart.: MSS. of Alexander MacLeay and portrait of Rev. William Kirby.

1887.
William Davidson, Esq.: 1st and 2nd instalments of grant in aid of publication, £50.

1888.
The Secretary of State for India in Council: Grant in aid of publication of results of the Afghan Boundary Delimitation Expedition, £150.
Dr. J. E. T. Aitchison, towards the same, £25.
Dr. John Anderson, for the same, £60.
Wm. Davidson, Esq.: 3rd and last instalment, £25.
1889.

Bronze copy of model for Statue of C. von Linné, by J. F. Kjellberg; presented by Frank Crisp, Esq.

1890.

The Secretary of State for India in Council: Grant for Delimitation Expedition report, £200.
Oak table for Meeting Room, presented by Frank Crisp, Esq.
Subscription portrait of Sir Joseph Dalton Hooker, K.C.S.I., by Hubert Herkomer, R.A.
Executors of the late John Ball, Esq.: a large selection of books. An anonymous donor, £30.
Colonel Sir Henry Collett, K.C.B., towards the publication of his Shan States collections, £50.

1891.

Subscription portrait of Sir John Lubbock, Bart. [Lord Avebury], by Leslie Ward.
George Frederick Scott Elliot, Esq., towards cost of his Madagascar paper, £60.

1892.

Dr. Richard Charles Alexander Prior: projection lantern, £50.

1893.

Executors of Lord Arthur Russell: his collection of portraits of naturalists.
Electric light installation: cost borne by Frank Crisp, Esq.

1894.

Algernon Peckover, Esq., Legacy, £100 free of Duty.
Miss Emma Swan, "Westwood Bequest," £250.

1896.

Clock and supports in Meeting Room, presented by Frank Crisp, Esq.

1897.

William Carruthers, Esq.: Collection of engravings and photographs of portraits of Carl von Linné.
Royal Society: Grant towards publication of paper by the late John Ball, £60.
Subscription portrait of Professor George James Allman, by Marian Busk.

1898.

Sir John Lubbock, Bart.: Contribution towards his paper on Stipules, £43 14s. 9d.
Royal Society: Contribution towards Cole’s paper, £50.
" " " " Murray & Blackman’s paper, £80.
" " " " Elliot Smith’s paper, £50.
" " " " Forsyth Major’s paper, £50.
1899.
A. C. Harmsworth, Esq.: Contribution towards cost of plates, £43.
Royal Society: Contribution towards Mr. R. T. Günther's paper on Lake Urmī, £50.

1901.
Royal Society: Contribution towards F. Chapman's paper on Funafuti Foraminifera, £50.
Prof. E. Ray Lankester: Contribution towards illustration, £30 5s.
Portrait of St. G. J. Mivart; presented by Mrs. Mivart.

1903.
Royal Society: Contribution toward Elliot Smith's paper, £50.
Legacy from the late Dr. R. C. A. Prior, £100 free of duty.
Mrs. Sladen: Posthumous Portrait of the late Walter Percy Sladen, by H. T. Wells, R.A.
B. Arthur Bensley: Contribution to his paper, £44.

1904.
Royal Society: Grant in aid of third volume of the Chinese Flora, £120.
Supplementary Royal Charter: cost borne by Frank Crisp, Esq.

1905.
Royal Society: First grant in aid of Dr. G. H. Fowler's 'Biscayan Plankton,' £50.
Executors of the late G. B. Buckton, Esq.: Contribution for colouring plates of his paper, £26.

1906.
Royal Society: Second grant to 'Biscayan Plankton,' £50.
Subscription portrait of Prof. S. H. Vines, by Hon. John Collier.
ADDITIONS AND DONATIONS
TO THE
LIBRARY
1905–1906.

Achával (Luis). See Río (Manuel E.). Geografía de la Provincia de Córdoba.

Agricultural (The) Journal of India.

XXXI. Description des encéphales de Grampus griseus Cuv., de Stenogrammus frontatus Cuv., et de Globicephalus inelas Traill, provenant des Campagnes du Yacht Princesse-Alice. Par Auguste Petit. (1905.)

Antarctique Expédition Belge. See Belgica.

Aquila: a Periodical of Ornithology. Edited by Otto Herman. Vols. XI., XII.

Archiv für Hydrobiologie und Planktonkunde. Herausgegeben von Dr. Otto Zacharias.

Avebury (Right Hon. John, Lord). See Lubbock (Sir John).

Bell (Francis Jeffrey). See Maldive and Laccadive Archipelagoes. Actinogonidiate Echinoderms.

N. H. W. Maclaren.

Bergh (Rudolph). Die Opisthobranchiata der Siboga-Expedition. See Siboga-Expeditie. Monogr. L.

Bibliotheca Botanica (continued).

Bibliotheca Zoologica (continued).

—— Land Crustaceans.

—— Marine Crustaceans.

—— See Gruvel (Abel). Monographie des Cirrhipèdes ou Thécostracés.

British Association for the Advancement of Science.

British Museum (continued).

Insects.

Homopterous Insects.

Anthozoa.

Fossils.

Brooklyn.

Brooklyn Institute of Arts and Sciences.

Bruce (Alexander). See Wright (Herbert). Para Rubber in Ceylon.

Buchanan (Francis). See Prain (David). A Sketch of the Life of Francis Hamilton (once Buchanan).

Budapest. See Aquila.

Buitenzorg.

Département de l'Agriculture aux Indes Néerlandaises.

Buitenzorg (continued).

's Lands Plantentuin.

Bulawayo.

Rhodesia Scientific Association.

—— Microzoa and Mollusca from East Crete. Pp. 5; plates 5.

(Geol. Mag., n.s. Decade 5, vol. iii. pp. 353–358.)

Calcutta.

Asiatic Society of Bengal.

Indian Museum.

Cameron (Peter). See Maldive and Laccadive Archipelagoes. Hymenoptera.

Cape Town.

South African Museum.

Ceylon—Royal Botanic Gardens. See Pérádeniya.

— New or Little-known Victorian Fossils in the National Museum, Melbourne.

Colombo—Royal Botanic Gardens. See Pérádeniya.

Geddes (P.) and Thomson (J. A.). The Evolution of Sex. (1889).

Cooper (C. Forster). See Maldive and Laccadive Archipelagoes. Antipatharia.

— — — Cephalochordva. Syst. and Anatomical Account.

Dublin.
Department of Agriculture and Technical Instruction for Ireland. Fisheries Branch.
Scientific Investigations:
1902-1903. Nos. 1, 2, 3, 7, 10, 11. (1905).
1904. Nos. 3-7. (1905-6).
1905. No. 2. (1906).
Svo. Dublin, 1905-1906.
Authors and Scientific Adviser.

Royal Zoological Society of Ireland.

Durand (Théophile) and Jackson (Benjamin Daydon). Index Kewensis Plantarum Phanerogamarum. Supplementum Primum Nomina et Synonyma Omnium Generum et Species et ab initio anno 1886 usque ad finem anni 1895 complectens. Fasciculus IV. 4to, Bruxellis, 1906. B. Daydon Jackson.

Dyer (Sir William Turner Thiselton-). See Oliver (D.). Flora of Tropical Africa.

Elliot (Sir Charles). See Maldives and Laccadive Archipelagoes. Nudibranchiata.

VII. Die Pflanzenwelt von West-Australien südlich des Wendekreises, von Dr. Ludwig Diels. Pp. xii, 413; mit 1 Vegetations-Karte und 82 Figuren im Text, sowie 34 Tafeln. (1906.)

Fisheries.

North Sea Fisheries Investigation Committee.

Fishery Board for Scotland.

North Sea Fisheries Investigation Committee.

North Sea Fisheries Investigation Committee.

Fletcher before the Select Standing Committee on Agriculture and Colonization. 1905; pp. 25. 8vo. Ottawa, 1905. Author.

Forster-Cooper (C.). See Cooper (C. Forster).

Foslie (M.). See Maldive and Laccadive Archipelagoes. Lithothamnia.

Gardiner (John Stanley). See Maldive and Laccadive Archipelagoes.

I. Chlamydomonas Braunii (mihi).
II. Chlamydomonas Reinhardi (Dangeard) und seine Verwandten.

Glasgow.

Marine Biological Association of the West of Scotland.

Goroshankin or Goroshankin. See Ghorozhankin (Ivan Nikolaevich).

Hamilton (Francis) [formerly Buchanan]. See Prain (David). A Sketch of the Life of F. Hamilton (once Buchanan).

— Imitative Forms of Fusus antiquus and Buccinum undatum, subsequent to Injury. (The Illustrations are mainly from the Collection of the late John Gwyn Jeffreys.) 4to. London [1905]. Author.

Herdman (William Abbott). See Liverpool: Lancashire Sea-Fisheries Laboratory, &c.

— See 'Triton,' Cruise of H.M.S. Tunicata.

Herman (Otto). See Aquila.

Hoek (Paulus Peronius Cato). See 'Triton.' Cruise of H.M.S. Pycnogonida.

Svo. Dublin, 1906. Authors.

Hope Reports. (A Series of Reprints and Extracts from various Journals, reissued for private Circulation.) Edited by EDWARD B. POULTON. Vol. V. 1903–1906.

Hopkinson (John). See Cash (James). The British Freshwater Rhizopoda and Heliozoa. (Ray Society.)

India.

Geological Survey (con.).

Memoirs (Palæontologia Indica).

— See Durand (Théophile). Index Kewensis.
— See English Men of Science—Bentham (George).

Johnstone (James). See Liverpool: Lancashire Sea-Fisheries Laboratory, &c.

Kew.

Royal Botanic Gardens.

Bulletin of Miscellaneous Information.

Nos. 157-158 for (1900).
No. 2 for 1905. Appendix II.

Laidlaw (Frank Fortescue). See Maldive and Laccadive Archipelagoes. Amphibia and Reptilia.

— Dragon-Flies.

— Land Planarian.

— Marine Turbellaria.

Lake (Hilda). See Drabble (Eric). On the Effect of Carbon Dioxide on Geotropic Curvature of the Roots of *Pisum sativum*, L.

— See Drabble (Eric). The Osmotic Strength of Cell-Sap in Plants growing under different Conditions.

Leicester.

Leicester Corporation Museum and Art Gallery.

— Ueber den Larvenzustand und die Metamorphose der Echinorhynch. Pp. 37. 4to. Leipzig, 1873. h 2

Liverpool.

Institute of Commercial Research in the Tropics, Liverpool University.

Lancashire Sea-Fisheries Laboratory at the University of Liverpool and the Sea-Fish Hatchery at Piel.
No. XIV. Report for 1905. (Drawn up by Prof. W. A. Herdman, assisted by Andrew Scott and James Johnstone.) Svo. Liverpool, 1906. Prof. W. A. Herdman.

Marine Biological Station at Port Erin (Isle of Man).

University of Liverpool.

Loew (Ernst). *See Kirchner (Oskar)*. Lebensgeschichte der Blütenpflanzen Mitteleuropas.

London.

Rothamsted Experimental Station, Harpenden.

South London Entomological and Natural History Society.
Maas (Otto). Die Craspedoten Medusen der Siboga-Expedition. See Siboga-Expedition. Monogr. X.
McCabe (Joseph). See Haeckel (Ernst Heinrich). Last Words on Evolution.
Magdeburg.
Museum für Natur- und Heimatkunde.
Vol. I.
Hymenoptera. By P. Cameron. 1901.
Nemerteans. By R. C. Punnett. 1901.
Amphibia and Reptilia. By F. P. Laydew. 1902.
Lepidoptera. By Ed. Meyrick. 1902.
Land and Freshwater Mollusca. By Edgar A. Smith. 1902.
Pigments of certain Corals, and Asteroid. By C. A. MacMunn. 1902.
Marine Crustaceans, I. Varieties. II. Fortuniidea. By L. A. Borradaile. 1902.
Proceedings of the

Chetognatha, &c. By Leonard Doncaster. 1902.

Actinogonidate Echinoderms. By Prof. F. Jeffrey Bell. 1902.

Marine Crustaceans, III. The Xanthidæ and some other Crabs. By L. A. Borradaile. 1902.

Scyllaridea. By C. Tate Regan. 1902.

Marine Turbellaria. By Frank Fortescue Laidlaw. 1902.

Earthworms. By Frank E. Beddard. 1903.

Lithothamnia. By M. Foslie. 1903.

Vol. II.

Aleyonaria. Part I. By Prof. Sydney J. Hickson. 1903.

Aleyonaria. Part II. By Edith M. Pratt. 1903.

Marine Crustacea. IX. The Sponge-crabs (Dromiaceae). By L. A. Borradaile. 1903.

Marine Mollusca. By Edgar A. Smith. 1903.

Enteropneusta. By R. C. Punnett. 1903.

Hydromeduse, with a Revision of the Williadae and Petasidæ. By Edward T. Browne. 1904.

Antipatharia. By C. Forster-Cooper. 1904.

Aleyonaria. By Sydney J. Hickson. 1905.

Vol. II.—Supplement I.

Coleoptera. By D. Sharp. 1905.

Manchester.
Botanical Exchange Club of the British Isles.

Manila.
Department of the Interior.
Bureau of Government Laboratories. No. 36.
No. 36. McGregor (Richard C.) and Worcester (Dean C.). A Hand-

Marquand (Ernest David). The Guernsey Dialect and its Plant

Pennatulida.

Marshall (John James). A List of the Mosses and Hepatics of
the Riding. See Robinson (James Fraser). Flora of the East

Martius (Karl Friedrich Philipp von). Zur Erinnerung an K. F.
Pt. v. MARTIUS. Gedächtnisrede bei Enthüllung seiner Büste
im K. Botanischen Garten in München am 9. Juni, 1905,

Massie (George). British Fungi. Phycomycetes and Usilha-

Meigen (Wilhelm). See Eichler (Julius). Ergebnisse der pflan-
zeengeographischen Durchforschung von Württemberg, Baden
und Hohenzollern. I.

Melbourne.
Department of Agriculture.

National Museum.
I. Woodward (Arthur Smith). On a Carboniferous Fish Fauna from

Menzbier (Michael Alex). Tetrastes griseiventris, new species.
Pp. 9, plate 1 col. (Proc. Imper. Moscow Univ., i.) (in

Meyrick (Edward). See Maldive and Laccadive Archipelagoses.
Lepidoptera.

Milner (James D.). Catalogue of Portraits of Botanists exhibited

Mobius (Karl August). Können die Tiere Schönheit wahr-

Mobius (Martin). De Toni, G. B. Sylloge Algarum omnium
Notice of. Pp. 3. (Naturwissenschaftliche Wochenschrift,

Munich.

Königlich-bayerische Akademie der Wissenschaften.

Naples.

Zoologische Station zu Neapel.

Natal, Department of Agriculture. See Pietermaritzburg.
VI. Sakurai (Tsunejiro). Normentafeln zur Entwicklungsgeschichte des Rehes (Cervus Capreolus). Mit einem Vorwort von Dr. F. Keibel. Pp. 100, Taf. 3. 1906.
[Continued as]
Olsson (Peter). Entozoa, iaktagna hos Skandinaviska hafsöskar. Pp. 64, tab. 3. (Lunds Univ. Årsskrift, iv.) 4to. Lund, 1867.
Oxford. See Manchester. Botanical Exchange Club of the
British Isles.

Parker (William Newton). See Weismann (August). The
Germ-Plasm.

Parona (Corrado). Appunti storici di Elmintologia Italiana a
Contributo della corologia Elmintologica umana in Italia.
PP. 21. (Gazzetta Medica Italiano-Lombardia, Anno 1888.)
— Sedi insolite del "Coenurus serialis," Gerv. nel coniglio e
nella lepre. Pp. 8, fig. 1. (Ann. R. Accad. Agric. Torino,
vol. 46.)

Primulaceae.

Pease (H. T.). See Journal of Tropical Veterinary Science
Pérâdeniya.
Royal Botanic Gardens.

Pettit (Auguste). Description des encéphales de Grampus
griseus Cuv., de Steno frontatus Cuv., et de Globicephalus
melas Traill, provenant des Campagnes du Yacht Princesse-
Alice. See Albert.

Pfeffer (Wilhelm). The Physiology of Plants: A Treatise upon
the Metabolism and Sources of Energy in Plants. Second
fully revised Edition. Translated and Edited by Alfred J.

Pflanzenreich (Das). See Engler (Adolf).

Pietermaritzburg.
Natal Department of Agriculture.
figs. 99. 1905.

Natal Government Museum.

Piper (Charles V.). North American Species of Festuca. Pp. 48;
plates 15. (Contr. U.S. Nat. Herb. x. pt. 1.)

Plankton-Expedition der Humboldt-Stiftung (con.).
Bd. II. F. b. Die Pteropoden, von P. Schiemenz. 1906.
„ II. G. g. Die Ostracoden (Halocypriden und Cypridiniden) . . .
von W. Vávra. 1906.
„ III. k. 3. Die Tripyleen Radiolarien: Atlanticellidae von A. Borger.
1906.

Pocock (Reginald Innes). See Maldive and Laccadive Archi-
pelagoes. Arachnida.

Pratt (Edith M.). See Maldive and Laccadive Archipelagoes. Alecyonaria. Part II.

Ray Society. Publications (cont.).

Regan (C. Tate). See Maldive and Laccadive Archipelagoes. Fishes.

Rhodesia Scientific Association. See Bulawayo.

Sablon (Leclerc du). See Bonnier (Gaston). Cours de Botanique.

St. Petersburg.

Schröter (Carl). See Kirchner (Oskar). Lebensgeschichte der Blütenpflanzen Mitteleuropas.

Scott (Andrew). See Liverpool: Lancashire Sea-Fisheries Laboratory, &c.

Sharp (David). See Maldive and Laccadive Archipelagoes. Coleoptera.

--- Parasites.

--- Sipunculoidea.

Silva. See Flora and Silva. Edited by W. Robinson.

Svo. Pietermaritzburg, 1905. Author.

Dr. R. Braithwaite.

Swainson (William) to Audubon (John James). (Hitherto unpublished Letters.) See Deane (Ruthven).

Sydney.

Tunicata. By W. A. Herdman.
Asteroidea. By W. Percy Sladen.

Pp. 75; Taf. 2. 4to. Freiburg-im-Breisgau, 1837.
N. H. W. Maclaren.

Turner (Frederick). Botany of North-Western New South Wales.
Pp. 60; plate I. (Proc. Linn. Soc. N. S. Wales, xxx. pt. 1.)
Svo. Sydney, 1905. Author.

United States Department of Agriculture (con.).
Division of Botany.
Contributions from the U.S. National Herbarium. Vol. X.
Pts. 1, 2.
B. Daydon Jackson.

United States Geological Survey (con.).
Pp. 1286; plates 13, figs. 32. 1904.

Van Hise. See Hise (Richard Charles van).
Vávra (Wenzel). See Plankton-Expedition. Die Ostracoden
(Halocypriden und Cypridiniden).

Veitch (James Herbert). Hortus Veitchii. A History of the
Rise and Progress of the Nurseries of Messrs. James Veitch &
Sons, together with an Account of the Botanical Collectors and
Hybridists employed by them, and a List of the most remarkable
of their Introductions. Pp. 542. Illustrated with Fifty Photogravure

Vejedovsky (Franz). Ueber einige Süßwasser-Amphipoden. III.
Die Augenreduktion bei einem neuen Gammariden aus Irland,
und über Niphargus Caspary Pratc aus dem Brunnen von
München. Pp. 40, mit 2 Tafeln und 14 Textfiguren. (S.B.
Author.

Versluys (Jan). See Siboga-Expeditie. Die Gorgoniden der
Siboga-Exped. II. Die Primnoïdæ.

Verson (Enrico). Zur Entwicklung des Verdauungskanals bei

Vialleion (Louis). See Lortet (Louis). Étude sur le Bilharzia
hematobia et la Bilharziose.

Vierhapper (Fritz). Monographie der alpinen Erigeron-Arten
Europas und Vorderasiens. Pp. 176; Taf. 6, Karten 2. (Beih.
Bot. Centralbl. 2te Abt, xix.)

Vormeng (Carl). Die Bandwürmer des Menschen nach den

Washington.

LINN. SOC. PROCEEDINGS.—SESSION 1905–1906.

Woodward (Bernard Barham). See Sherborn (Charles Davies). On the Dates of Publication of the Natural History Portions of the 'Encyclopédie Méthodique.'

York, Eastleigh, Birmingham, and Cambridge.

Zacharias (Otto). See Archiv für Hydrobiologie und Planktonkunde.

Zürich.

Botanisches Museum der Universität, Zürich.
Mitteilungen XXXI.

Dr. Hans Schinz.
DONATIONS IN AID OF PUBLICATIONS.

1905.

Nov. 24. Executors of the late G. B. Buckton. Contribution in aid of colouring 2 plates of his paper: Observations on some undescribed or little-known Species of Hemiptera-Homoptera of the Family Membracidae (Trans. 2nd ser., Zool. vol. ix. part 9) 26 0 0

1906.

April 26. The Royal Society. Second grant in aid of Dr. G. Herbert Fowler's "Biscayan Plankton" (Trans. 2nd ser., Zool. vol. x.). 50 0 0
[The following Obituary Notice was only received on the 27th September, after the foregoing pages were in type.]

WALTER FRANK RAPHAEL WELDON, the subject of the present memoir, was born on March 15th, 1860, and was educated at Caversham School and afterwards, during 1876 and 1877, at University and King's Colleges, London. In April 1878 he entered St. John's College, Cambridge, and studied Physiology and Zoology under Prof. Michael Foster and the late Francis Maitland Balfour. He obtained a first class in the first part of the Natural Science Tripos (under the old Statutes) in 1881 and proceeded to the degree of B.A. in the same year. In 1882 he was placed in the first class in the second part of the Natural Science Tripos, and after a period of study at the Zoological Station at Naples, was resident chiefly at Cambridge, where he was engaged in zoological research, and acted as a Demonstrator to Mr. A. Sedgwick and Assistant Lecturer in the Zoological Laboratories. He married in 1883 Florence Joy, the eldest daughter of William Tebb, Esq., of Rede Hall, Burstow, Surrey, and never was there a happier marriage. In November 1884 Weldon was elected to a Fellowship at St. John's College, and almost simultaneously was appointed University Lecturer in the Advanced Morphology of Invertebrata at Cambridge. In 1886, a year after his father's death, he went in company with his wife on a zoological expedition to the Bahamas, and returning to Cambridge at the end of the same year, resumed his work as University Lecturer. In 1888, on the completion of the Laboratory of the Marine Biological Association at Plymouth, Weldon was one of the first to make use of the opportunities offered for the study of English Marine Zoology, and having obtained leave of absence from Cambridge, he resided at Plymouth for two years, and there began the course of biometrical research which was the chief interest of the rest of his life. In December 1890 he was elected to the Jodrell Chair of Zoology in University College, London, in succession to Professor Ray Lankester; and in 1899, when the latter was appointed Director of the British Museum of Natural History, Weldon again succeeded him, this time as Linacre Professor of Comparative Anatomy at Oxford. For the next seven years he resided at Oxford, occupied with the duties of his chair and with a constantly increasing quantity of biometrical research. Though he was obviously straining his energies to the utmost his health and vigour seemed to be unimpaired, and it was a great shock to his many friends when they heard of his death, after a very short illness, on April 13th, 1906. He was elected Fellow of our Society, 4th June 1891, and of the Royal Society in 1890.

Such is a brief outline of the life of one of the most gifted of contemporary zoologists: it would take many pages adequately to
fill in the picture with an account of his scientific work and an appreciation of his loveable personality. A few salient features may be dwelt on here.

Professor Weldon was the eldest son (his younger brother Dante died in 1881) of the late Walter Weldon, F.R.S., distinguished both in Journalism and Chemical Science, well known for his invention for the recovery of Chlorine in the Leblanc Soda-process, and one of the founders of the Society of Chemical Industry. It was said that the most remarkable characteristic of the father was "the marvellous avidity and thoroughness with which he grasped any subject upon which he brought his mind to bear. A strong and active mind was allied with a constitutional power and capacity and love of work which it is the good fortune of few to possess." The qualities that brought distinction to the father were inherited in full measure by the distinguished son. In his earliest days at Cambridge Raphael Weldon (he was always called by the last of his Christian names) was remarkable, even among the brilliant company of young zoologists gathered there under Francis Balfour, for his unusual enthusiasm for Zoology, and his University career was, like the rest of his life, devoted to his favourite study. He was a vigorous member and supporter of the Cambridge University Natural Science Club, and one of his contemporaries records that he used, when an undergraduate, to maintain the superiority of intellectual over material pleasures. To those who did not know him this might savour of youthful pedantry, but it was a simple and unaffected statement of his real pleasure in life. Intellectual as he was, Weldon had nothing of the pedant or recluse about him, and was impatient of all affectation of superior wisdom. Among the many rare qualities combining to make up a charming personality, sincerity was perhaps the most conspicuous, and to perfect candour was added a certain whimsical humour which made his conversation peculiarly attractive. While holding fast to his ideal of intellectual pleasure, Weldon was eminently sociable and full of human sympathy. He loved to surround himself with friends, and from the early days of his residence at Cambridge his rooms or his house were a centre of hospitality and good fellowship. Never did he appear to greater advantage than when entertaining his friends. On such occasions conversation would turn mainly on subjects of zoological controversy, which Weldon would discuss with the most admirable vivacity and spirit. No subject, however abstruse, could be dull in his hands. He would keep a room full of zoologists in roars of laughter while he argued some highly technical point in racy and unconventional language, with a wealth of illustration and anecdote that gave inimitable charm and interest to his discourse. On such occasions, and they were frequent, one could see how genuine and spontaneous was his love of Science. To his mind it was a fertile territory, abounding in gladness and beauty, where there were no arid wastes and no
dreary and desolate places. In this happy view of his life's work he was doubtless assisted by an uncommon power of working hard without any feeling of laborious effort. A friend of his has remarked that he had, like his father, a great facility for extracting the kernel of a memoir or book without wading through a very large proportion of the words. He instinctively fastened upon what was essential, and made it his own, and would read through a surprising amount of difficult and often dry literature without any apparent effort. Moreover, he was an excellent linguist and could not only read but speak several languages with ease and fluency. The same faculties that made Weldon a brilliant conversationist made him a lecturer of exceptional merit. He had a strong dramatic instinct, and utilized it to the full in the lecture-theatre and class-room. Aided by a natural aptitude for drawing, he would develop a subject both by speech and by finished drawings on the black-board, till it seemed to grow under his hands, and the driest subjects of anatomy took life and became replete with interest. His lectures at University College attracted not only a large class of students but also many of his colleagues, and his public courses of lectures at Oxford were no less successful.

Weldon's zoological work falls naturally into two periods. Trained at Cambridge under Prof. Francis Balfour, he naturally came under the influence of the embryological and morphological school of thought then dominant not only in England but on the Continent. His earliest papers of importance were published in 1883. One, on the early development of Lacerta muralis, is a careful piece of embryological work, such as was produced in considerable quantity at Cambridge at that period. The other, on some points in the anatomy of Phoenicopterus and its allies, was the outcome of work carried on in the Zoological Society's Gardens.

For some years after taking his degree Weldon followed the prevailing trend of zoological thought, and hoped, as the best zoologists then hoped, that the chief problems of animal evolution would be on a fair way to solution as embryological evidence accumulated. With this object in view, he made frequent journeys abroad to collect embryological material or to study the development of some marine organism on the spot. His expedition to the Bahamas was made with the purpose of studying the development of the Tornaria larva of Balanoglossus. Between 1883 and 1889 he published several memoirs, all distinguished for careful and methodical observation and considerable originality in morphological speculation, but their contents need no special mention in this place. When he went to Plymouth in 1888 his purpose was to study the development of the Crustacea, and for more than a year he applied himself diligently to this work, though his memoirs on the renal organs of the Decapoda and the development of the Common Shrimp did not appear till 1891 and 1892. But
like some of his Cambridge contemporaries, he had become dissatisfied with the methods of zoological reasoning then in vogue. It was consistent with his sincerity of character and purpose that he could not accept conclusions based upon what seemed to him to be imperfect argument and insufficient evidence, and he found that the mode of argumentation commonly in use, though ingenious, was lacking in rigour of scientific proof. At this time a considerable body of young naturalists was collected in the Plymouth Laboratory, and discussions on the validity of the doctrine of Natural Selection were frequent. Weldon was ever a firm upholder of Natural Selection, and in these discussions took up an attitude of firm opposition to the theories of Eimer and the neo-Lamarckian school. At the same time he could not give unqualified assent to the brilliant speculations of Weismann, then at the height of their influence, finding them, like the rest of current morphological speculation, too vague and too deficient in rigorous demonstration. Being therefore dissatisfied with the methods he had hitherto employed, Weldon turned his attention to the works of Francis Galton, and on reading these more attentively than he had done before, was immediately attracted by the prospect of introducing exact mathematical proof into zoological argument. The writer well remembers his coming into the Plymouth Laboratory one morning, armed with Galton’s ‘Natural Inheritance,’ the contents of which he forthwith proceeded to expound with his accustomed eagerness. He pointed out that since the time of the publication of the ‘Origin of Species,’ zoologists had blindly accepted Darwin’s conclusions, but, with few exceptions, had neglected Darwin’s methods. “Science,” he said, “is measurement: Darwin made use of measurement, and if we are to make any progress his example must be followed.” This was the turning-point of Weldon’s career. With characteristic energy he proceeded to apply to animals the statistical methods used by Galton in anthropometric researches, and as he was engaged at the time with the development of the Shrimp, he chose this animal for his first essay in what he afterwards called Biometrics. Collecting large numbers of shrimps from three different localities, he found that the results of his measurements confirmed what Galton had established for man and domesticated animals, and, further, that the “probable error” of the same organ was different for the three groups of shrimps from Plymouth, Southport, and Sheerness*. In other words, the shrimps from these localities form three distinct races. Encouraged by the success of his first effort, Weldon set to work to prepare himself for extended investigations of a like nature. Finding at the outset that his knowledge of statistics was insufficient, he put himself through a course of mathematical study, and in a short time was fully equipped for the prosecution of higher statistical

researches. A second paper on the Correlated Variations in _Crangon_ appeared in 1893, and about the same time he became a member of a committee of the Royal Society formed for the purpose of "Conducting Statistical Enquiries into the Measurable Characteristics of Plants and Animals." In connection with this Committee, he began an investigation on the variability of the breadths of the frontal carapace in the common shore-crab, _Carcinus maenas_, and this led to what was probably the most brilliant of his discoveries. He found that the mean frontal breadth of crabs taken from Plymouth Sound was diminishing at a relatively rapid rate, and came to the conclusion that this diminution was due to the changed conditions of Plymouth Sound owing to the great increase of the population of the three towns discharging their refuse into a bay nearly completely closed by a huge artificial breakwater, and also to the large quantities of china-clay discharged into the Sound. To prove this, he undertook the most laborious experiment of keeping a large number of crabs in water in which a quantity of finely divided china-clay was kept suspended, and he found that the crabs with broader frontal carapaces, and therefore wider respiratory apertures, were choked by the china-clay and died, while those with narrower frontal carapaces survived. By a still more laborious experiment he showed that in a number of young crabs reared in clean water, and therefore protected from the pernicious effect of mud and china-clay in suspension, the mean frontal breadth was raised above that of wild crabs of their own size living in Plymouth Sound. This convincing experiment formed the subject of Weldon's brilliant Presidential Address to the Zoological Section of the British Association at Bristol in 1898; and it remains an almost unique instance of a clear demonstration of the operation of Natural Selection in actual progress, while at the same time silenced those who objected that small and apparently useless variations could not be preserved by Natural Selection. What could seem more useless than a slight diminution of the breadth of the carapace of a crab? Yet a more extended knowledge showed that it is in fact useful under certain conditions and is preserved by Natural Selection.

At University College Weldon found a congenial spirit in Professor Karl Pearson, who, like himself, had been fired with enthusiasm for the statistical study of biological problems initiated by Galton, and the mathematical professor was soon able to render his colleague the most important assistance by the solution of the problem of dealing with the asymmetrical distribution of variations. They quickly became fast friends, and their cooperation has marked an epoch in statistical biological research.

In a short time Weldon, whose enthusiasm was contagious, had a group of young and ardent naturalists working under his direction, and in order to give expression to the new school of zoological thought thus growing up under his guidance, he initiated in 1901, in conjunction with Mr. Francis Galton, Professor Karl
Pearson, and Professor C. B. Davenport, a new journal, 'Biometrika,' to which he continued to contribute important statistical papers up to the time of his death. Unfortunately much of the work upon which he was engaged during the last few years remains unpublished. Much of it was of an exceedingly laborious and time-consuming nature. It would be difficult to give an idea of the technical difficulty and time required to collect the data for his paper on the study of Natural Selection in *Clausilia laminata,* published in the first number of 'Biometrika.' It involved the grinding down by hand of hundreds of fragile shells, and afterwards carefully measuring them. He continued these investigations amid much other work, from 1902-1906, and had prepared a number of sections for a similar paper upon snails of the genus *Helix,* but the work was left unfinished. He had been for the last four years deeply engaged in a controversy on the validity of Mendel's law, and many of his friends regretted that he took up from the first such an attitude of uncompromising opposition to what seemed to many to be a most promising instrument of research. But his attitude was hardly understood. He demanded more exact definitions and a more rigorous proof founded upon a larger number of instances than the adherents of Mendel were prepared to give in the earlier stages of the controversy; and when, true to his own principles, he put Mendel's hybridization results to proof, he found discrepancies which he was unable to reconcile by the exact statistical methods which he employed. He spared no pains to arrive at the truth, and instituted experiments on the hybridization of domesticated races of mice on a very large scale. Some of the results of these experiments have been published by his pupils Mr. E. A. Schuster and Mr. A. D. Darbishire; but the enquiry was still in progress at the beginning of the present year, and the data have been carefully collected and will form the subject of a posthumous memoir by Professor Karl Pearson.

Weldon had also projected and had written some part of a book on the Statistical aspect of Heredity and Variation, and it is hoped that the chapters left completed at his death may give a clue to his latest opinion on the subject.

These few fragments descriptive of an energetic scientific life will serve to show how great was the loss sustained by Zoology when so exact and yet so original an investigator was cut off in the fulness of his powers. Much as he had already done, Weldon had much more to accomplish, and he had set himself work from which results of the highest importance must have been derived. Beyond the loss to scientific thought there is the loss, to a large circle of friends, of one whose high character, affectionate and generous disposition, combined with wit and humour, leaves a void which cannot be filled. *Multis ille bonis flebilis occidit!* [G. C. B.]
INDEX TO THE PROCEEDINGS.

SESSION 1905–1906.

Note.—The following are not indexed:—The name of the Chairman at each meeting speakers whose remarks are not reported; and passing allusions.

Accounts, 16; laid before Anniversary Meeting, 15.
Additions to Library, 77–107.
Address, Presidential, 18–29.
Etiology of leprosy (Hutchinson), 4.
Africa, Rhodesian botany (Gibbs), 5; Uganda plants (Stapf), 5.
African Rubiaceæ and Composite (Moore), 14.
Algae, endophytic (Cotton), 8.
Allen, A. W., Margaretitifera Panascae, 8.
Alnwick, Shortia unijlora grown at, (Hindmarsh), 4.
Alteration in investments (Groves), 15.
Amentiferae, embryology of (Benson), 3.
Annes, O., elected, 3; proposed, 1.
Anderson, Dr. T., admitted, 15; elected, 12; proposed, 10.
Apospory in Polypondium (Druery), 4.
Arber, E. A. N., Geological record of true Ferns, 13; — abstract, 53.
Assheton, R., elected Councillor, 30.
Atkinion, E., deceased, 15.
Auditors elected, 13.
Aurivillius, Dr. C., letter presenting copies of portraits of C. v. Linné, 12.
Badhamia utricularis, shown, 4.
Ballots closed, 30.
Bastian, Dr. H. C., developmental changes in Zoöplora, 10.
Benefactions, 70–76.
Bennett, J. J., legatee of R. Brown, 50.
Benson, M., and others, Embryology of the Amentiferae, 3.
Berridge, E., on Carpinus Betulus, 5.
Bickford, E. J., removed, 17.
Bilgood, J., deceased, 15; obituary, 52.
Biscayan Plankton: Cephalopoda (Hoyle), Medusæ (Browne), 50.
Blackman, V. H., elected Councillor, 30.
Blackwell, Mr. L. E., cabinet portrait of C. v. Linné possessed by, 49.
Botanical Congress at Vienna, report on (Rendle), 5.
Bourne, Dr. G. C., elected Councillor, 50.
British water Rammneuli (Groves), 2.
Broom, Dr. R., Organ of Jacobson in Sphenodon, 8.
Brown, Dr. H. T., elected Auditor, 13; cf. 16; elected Councillor, 30.
Brown, Robert, left his property to J. J. Bennett, 50.
Brown, Dr. Robert, of Glasgow, elected, 49; proposed, 13.
Browne, E. T., Biscayan Meduse, 50.
Buckton, G. B., deceased, 15; obituary, 52.
Budden, E. R., removed, 17.
Bullen, Rev. R. A., appointed Scrutineer, 39; elected Auditor, 13, cf. 16.
Bund, J. W. W., removed, 17.
Burgess, Rev. W. R., removed, 17.
Burke, Dr. E., elected, 7; proposed, 3.
Burton, E. B., admitted, 3.
Calman, Dr. W. T., admitted, 9; elected, 7; proposed, 3.
Cape Characeæ (Groves), 7.
Carpinus Betulus, its embryology (Benson), 3.
Carruthers, W., on disposition of R. Brown's property, 50; original portraits of Linnaeus, 59; subscription portrait of Prof. Vines, 7.
Cephalopoda of Biscayan Plankton (Hoyle), 50.
Chamberlain, V. I., deceased, 15.
Characeae from the Cape (Groves), 7.
China, Conifers of (Masters), 50.
Chondroderma radium shown, 4.
Christy, T., deceased, 15; obituary, 36.
Clarke, C. B., Councillor retired, 30.
Coller, Hon. John, portrait of Prof. Vines, 7.
Collins, F. H., withdrawn, 15.
Compositae, African (Moore), 14.
Coniferce, Chinese (Masters), 50; new genus (Hayata), 14.
Cooper, W. F., elected, 7; proposed, 3.
Coral-reefs, fauna (Kent), 51.
Cotton, A. D., endophytic alge, 8.
Council elected, 50.
Crisp, F., Councillor retired, 30; elected Auditor, 13, cf. 16.
Crombie, Rev. J. M., deceased, 15; obituary, 36.
Crustacea shown (Waddington), 51.
Cystopteris montana, aporyphy in (Drury), 4.
Cyrtandrae, Malayan (Kränzlin), 7.
Darjeeling, new Populus from (Haines), 50.
Dawe, M. T., plants collected in Uganda (Stapf), 51; proposed as Fellow, 49.
Day, D. L., elected, 14; proposed, 12.
Deaths recorded, 15.
Dendy, Prof. A., communication by (Broom), 8; elected Councillor, 50.
Dennis, W., withdrawn, 15.
Dimorphism in Widdringtonia (Rendle), 4.
Diptera, their genitalia (Weschê), 51.
Donations, 108.
Draper, W., elected, 7; proposed, 3.
Drury, C. T., aporsophy in Polypondium and Cystopteris, 4.
Duff, Rt. Hon. Sir M. E. G., deceased, 15; obituary, 36.

Ecology, plant (Henslow), 1.
Elborne, W., removed, 17.
Elections recorded, 15.
Ellis, Hon. C. A., deceased, 15; obituary, 38.
Embryology of Amentifera (Benson), 3.
Endophytic alge (Cotton), 8.
Farmer, Prof. J. B., Councillor retired, 30.
Fauna of coral-reefs (Kent), 51.
Fellows, deceased, 15; elected, 17; removed, 17; withdrawn, 18.
Ferns, geological record (Arber), 13; — abstract, 54.
Findon, H., admitted, 12; elected, 12; proposed, 9.

Fish of coral-reefs (Kent), 51.
Fitch, E. A., removed, 17.
Flora, preglacial (Reid), 15.
Flowers, transparencies shown (Wal-tham), 8.
Foreign Members, deceased, 15; elected, 14.
Formosa, Taiwania from (Hayata), 14.
Fowler, G. H., communication by (Browne), 50; (Hoyle), 50; grant in aid of publication, 108.
Fowler, Rev. Canon W. W., elected Councillor, 30; nominated V.-P., 49.
Fox, T., elected, 57; proposed, 15.
French, C., withdrawn, 15.

Gardiner, J. S., Expedition in H.M.S. 'Sealark,' 9.
Genitalia of Diptera (Weschê), 51.
Geography, plant (Henslow), 1.
Gibbs, Miss L. S., admitted, 50; botany of Southern Rhodesia, 51.
Graying shown (Henslow), 1.
Great Britain, preglacial flora (Reid), 13.
Groves, H., appointed Scrutineer, 50; moved thanks to President for Address, 29; suggested alteration in investments, 15.
Groves, H. & J., British water Ramunculi, 2; Characeae from the Cape, 7.
Gymnosperms, affinities (Scott), 14; — abstract, 57; evolution (Seward), 13; — abstract, 56; their origin (Oliver), 13; — abstract, 53.

Haagen, Jean, copies of portraits of C. v. Lioue, 12.
Haines, H. H., new species of Populus, 50.
Hardy, A. D., elected, 3; proposed, 1.
Hayata, B., Taiwania, a new coniferous genus, 14.
Heathcote, W. H., withdrawn, 15.
Henslow, G., plant oecology, 1; tails of trout and grayling shown, 1.
Herdman, Prof. W. A., Address, 18-29; communication by (Simpsom), 1; elected Councillor, 50; elected President, 50; presentation of medal by, 30-32; thanks to, for Address, 5; young place shown, 50.
Hertwig, Prof. O., proposed For. Memb., 11.
Hindmarsh, W. T., culture of Shortia, 4.
Holmes, E. M., Macrozamia spiralis causing paralysis, 3.
Hopkinson, J., communication by (Weschê), 51; elected Auditor, 15, cf. 16.
INDEX.

117

Horniman, F. J., deceased, 15; obituary, 40.

Houghton, H. E., elected, 50; proposed, 15.

Hoyle, W. E., Cephalopoda of Biscayan Plankton, 50.

Hutchinson, Dr. J., otiology of leprosy, 4.

Indian Ocean, Percy Sladen Trust Expedition, 9.

Investments, alteration (Goves), 15.

Isis hippocriii (Simpson), 11.

Jackson, B. Daydon, elected Councillor, 50; elected Secretary, 50; on audit, 16; Shortia, 11; — abstract, 52; small portrait of C. v. Linné shown, 49.

Jackson, H. St. J., removed, 17.

Jacobson’s organ in Sphenodon (Broom), 8.

Keays, F. L., deceased, 15.

Keen, W. B., certificate, 16.

Kirk, W. T., removed, 17.

Kneip, H. R., elected, 49; proposed, 14.

Koelliker, Dr. R. A. v., deceased, 15; obituary, 41; vacancy due to his death, 11.

Kraft, P., copy of his portrait of C. v. Linné, 12.

Kränzlin, Dr. F., Malayan Cystandreae, 7.

Lamont, Rev. J., admitted, 49.

Larvae of plaice shown (Herdman), 50.

Layard, Miss N. F., admitted, 12; elected, 10; proposed, 7.

Leprosy, otiology of (Hutchinson), 4.

Librarian’s Report, 17.

Library, Additions, 77-107.

Linné, C. v., copies of portraits presented, 12; original portraits (Carruthers), 59; small portrait shown, 49.

Linnean Medal presented, 30.

Liverpool University, Address to, 2; thanks returned, 3.

Luton, Mycetozoa near (Saunders), 4.

Lygodonodemum oldhamium, Williams, root-tip (Weiss), 51.

McDonagh, J. E. R., admitted, 12; elected, 12; proposed, 9.

McMahon, Col. A. H., admitted, 1.

Macrozamia spiralis causing paralysis in Queensland (Holmes), 3.

Malayan Cystandreae (Kränzlin), 7.

Margaritifera Panasese (Allen), 8.

Masterman, Dr. A. T., proposed, 49.

Masters, Dr. M. T., comm. by (Hayata), 14; Citifers of China, 50; seconds vote of thanks to President, 29.

Medallist, Rev. Canon Norman, 55.

Meduse of Biscayan Plankton (Browne), 50.

Metamorphosis of plaice (Herdman), 50.

Middleton, A. M., reinstated, 17.

Monckton, H. W., Accounts, 16; elected Councillor, 30; elected Treasurer, 30; nominated V.-P., 49.

Morey, F., admitted, 12; elected, 10; proposed, 7.

Mountmorres, Viscount, admitted, 4; elected, 3; proposed, 1.

Murray, G. A. M., removed, 17.

Mycetozoa (Saunders), 4.

Norman, Rev. Canon, Medallist, 30-32.

Naytia florbunda, R. Br. (Schwartz), 14; — abstract, 57.

Oecology, plant (Henslow), 1.

Officers elected, 35.

Oliver, Prof. F. W., elected Councillor, 50; origin of Gymnosperms, 13; — abstract, 53.

Osborn, Prof. H. F., proposed as For. Memb., 11.

Otoliths from fishes (Stebbing), 3.

Packard, Prof. A. S., vacancy due to death of, 11.

Pakefield, pregelacial flora from (Reid), 13.

Pasch, L., portrait of Linné, 50.

Patterson, Sir R. L., deceased, 15; obituary, 44.

Payne, G., withdrawn, 15.

Percy Sladen Trust Expedition (Gardiner), 9.

Phillips, W., deceased, 15; obituary, 44.

Physarum leucopus shown, 4.

Phytotopography (Henslow), 1.

Plaice larvae shown (Herdman), 50.

Plankton Cephalopoda (Hoyle), 50; — Meduse (Browne), 52.

Plasmodium of Mycetozoa (Herdman), 4.

Pleuronectes platessa, stages of development (Herdman), 50.

Polypondium vulgare, aposporous in (Drury), 4.

Populus, new species (Haines), 50.

Port Erin, plaice reared at (Herdman), 50.

Portraits of C. v. Linné, original (Carruthers), 59; presented, 12.
INDEX.

Poulton, Prof. E. B., elected Councillor, 30.
Peain, Lt.-Col. D., elected Councillor, 50; nominated V.-P., 49.
Preglacial flora of Great Britain (Reid), 13.
President. Address, 18-29; elected, 30; on medallist, 30-52.
Otoliths, their affinities (Scott), 14; — abstract, 57.
Queensland. Macrobania spiralis shown from (Holmes), 5.
Raisin, Miss C. A., admitted, 14; elected, 13; proposed, 11.
Ranunculi, British water, shown (Groves), 1.
Reefs, Coral, fauna of (Kent), 51.
Reeves, J., admitted, 7; elected, 1.
Reid, C., elected Councillor, 50; preglacial flora of Great Britain, 13.
Reid, Mrs. C., drawings by, 13.
Rendle, Dr. A. B., dimorphic Wid掸ingtonia, 4; elected Councillor, 50; Vienna Bot. Congress Report, 5.
Rhodesia, its botany (Gibbs), 51.
Ridewood, Dr. W. G., Councillor retired, 39.
Rimmer, R., deceased, 15; obituary, 45.
Robertson, D., coll. of otoliths, 3.
Roebuck, W. D., admitted, 50.
Rogers, C. G., admitted, 3.
Root-tip of Loganiodeum (Weiss), 51.
Roslin, A., copy of his portrait of C. v. Linné, 12.
Rousseau, J. J., Linné’s portrait acquired as that of, 49.
Royal Academy of Sciences, Stockholm, portraits of C. v. Linné, 12.
Rubiacae, African (Moore), 14.
Ruddock, J. C., photographs of Shortia, 4.
Russell, T. H., admitted, 12; elected, 12; proposed, 9.
Sadany, E., on Carpinus Betulus, 3.
Sargent, Ethel, elected Councillor, 30.
Saunders, G. S., appointed Scrutineer, 30.
Saunders, J., on Mycetozoa, 4.
Schwartz, E. J., admitted, 12; elected, 12; proposed, 9; on Nyctisla floribunda, 14; — abstract, 57.
Scott, Dr. D. H., affinities of Gymnosperms, 14; — abstract, 57; elected Councillor, 50; elected Secretary, 30; letter from R. Zeiller, 12.
Scott, Rev. L., removed, 17.
Scrutineers appointed, 30.
‘Scalark’ Expedition (Gardiner), 9.
Secretaries elected, 30.
Secretary, General, Obituary Notices, 32; Report, 15.
Seward, A. C., evolution of Gymnosperms, 15; — abstract, 56.
Sharp, D., Councillor retired, 30.
Shipley, A. E., elected Councillor, 50.
Shortia, distribution (Jackson), 15; — abstract, 52.
Sphenodon, Jacobson’s organ in (Broom), 5.
Stapf, Dr. O., elected Councillor, 30; Uganda plants, 51.
Steans, A. E. B., admitted, 12; elected, 10; proposed, 7.
Stebbing, Rev. T. R. R., comm. by (Allen), 8, (Hutchinson), 4; elected Councillor, 30; elected Secretary, 30; otoliths from fishes, 3.
Stockholm, copies of portraits of C. v. Linné from, 12.
Tails of fishes (Henslow), 1.
Taiwania, Hayata, a new coniferous genus, 14.
Taiwanites, corrected to Taiwania, 14.
Thomson, J. S., admitted, 4.
Townsend, F., deceased, 15; obituary, 47.
Treasurer elected, 50; his accounts, 16; — submitted, 15.
Trout shown (Henslow), 1.
Uganda plants (Stapf), 51.
Vice-Presidents nominated, 49.
Vienna, Report on Botanical Congress (Rendle), 5.
Vines, Prof. S. H., portrait presented, 7.
Waddington, H. J., admitted, 50; elected, 49; proposed, 13; species of Crustacea shown, 51.
Waltham, T. E., transparencies of flowers shown, 8.
Watson, John, withdrawn, 15.
Watson-Will, W., deceased, 15.
Weale, J. A., proposed, 49.
Weiss, F. E., root-tip of *Lyginodendron*, 51.

Weldon, Prof. W. F. R., deceased, 15; obituary, 109.

Welsford, Miss E. J., admitted, 50; elected, 49; proposed, 14.

Weisché, W., Genitalia of Diptera, 51.

Widdringtonia, dimorphic (Rendle), 4.

Wilkinson, Rev. J. F., removed, 17.

Williams, H., withdrawn, 15.

Withdrawals recorded, 15.

Woodward, Dr. A. S., elected Councillor, 50; nominated V.-P., 49.

Yerbury, Col. J. W., elected, 14; proposed, 12.

Zeiller, R., letter from, 12.

Zooglea, develop. changes in (Bastian), 10.

Zoological Department of Liverpool Museum, Address to, 2; thanks from, 3.
Publications of the Society issued during the period, 31st July 1905, to 31st July, 1906:—

 " 259, 30th Sept., 1905.
 " 260, 23rd July, 1906.

 (Zoology), No. 193, 21st Feb., 1906.
 " 194, 23rd July, 1906.

 " iv., Sept. 1906.

 Vol. X. " iv., Nov. 1906.
 " v., Feb. 1906.

